minimum value of $I(l)$ in definite integration
$begingroup$
If $displaystyle I(l)=int^{infty}_{0}frac{x^l}{2x^6+4x^5+3x^4+5x^3+3x^2+4x+2}dx.$ for $0<l<5.$
Then value of $l$ for which $I(l)$ is minimum
What i tried
Put $displaystyle x=frac{1}{t}$ and $displaystyle dx=-frac{1}{t^2}dt$
$displaystyle I(l)=int^{infty}_{0}frac{t^{4-l}}{2t^6+4t^5+3t^4+5t^3+3t^2+4t+2}dt=int^{infty}_{0}frac{x^{4-l}}{2x^6+4x^5+3x^4+5x^3+3x^2+4x+2}dx$
$displaystyle 2I(l)=int^{infty}_{0}frac{x^l+x^{4-l}}{2x^6+4x^5+3x^4+5x^3+3x^2+4x+2}dx$
How do i solve it.Help me
Thanks in advance
definite-integrals
$endgroup$
add a comment |
$begingroup$
If $displaystyle I(l)=int^{infty}_{0}frac{x^l}{2x^6+4x^5+3x^4+5x^3+3x^2+4x+2}dx.$ for $0<l<5.$
Then value of $l$ for which $I(l)$ is minimum
What i tried
Put $displaystyle x=frac{1}{t}$ and $displaystyle dx=-frac{1}{t^2}dt$
$displaystyle I(l)=int^{infty}_{0}frac{t^{4-l}}{2t^6+4t^5+3t^4+5t^3+3t^2+4t+2}dt=int^{infty}_{0}frac{x^{4-l}}{2x^6+4x^5+3x^4+5x^3+3x^2+4x+2}dx$
$displaystyle 2I(l)=int^{infty}_{0}frac{x^l+x^{4-l}}{2x^6+4x^5+3x^4+5x^3+3x^2+4x+2}dx$
How do i solve it.Help me
Thanks in advance
definite-integrals
$endgroup$
add a comment |
$begingroup$
If $displaystyle I(l)=int^{infty}_{0}frac{x^l}{2x^6+4x^5+3x^4+5x^3+3x^2+4x+2}dx.$ for $0<l<5.$
Then value of $l$ for which $I(l)$ is minimum
What i tried
Put $displaystyle x=frac{1}{t}$ and $displaystyle dx=-frac{1}{t^2}dt$
$displaystyle I(l)=int^{infty}_{0}frac{t^{4-l}}{2t^6+4t^5+3t^4+5t^3+3t^2+4t+2}dt=int^{infty}_{0}frac{x^{4-l}}{2x^6+4x^5+3x^4+5x^3+3x^2+4x+2}dx$
$displaystyle 2I(l)=int^{infty}_{0}frac{x^l+x^{4-l}}{2x^6+4x^5+3x^4+5x^3+3x^2+4x+2}dx$
How do i solve it.Help me
Thanks in advance
definite-integrals
$endgroup$
If $displaystyle I(l)=int^{infty}_{0}frac{x^l}{2x^6+4x^5+3x^4+5x^3+3x^2+4x+2}dx.$ for $0<l<5.$
Then value of $l$ for which $I(l)$ is minimum
What i tried
Put $displaystyle x=frac{1}{t}$ and $displaystyle dx=-frac{1}{t^2}dt$
$displaystyle I(l)=int^{infty}_{0}frac{t^{4-l}}{2t^6+4t^5+3t^4+5t^3+3t^2+4t+2}dt=int^{infty}_{0}frac{x^{4-l}}{2x^6+4x^5+3x^4+5x^3+3x^2+4x+2}dx$
$displaystyle 2I(l)=int^{infty}_{0}frac{x^l+x^{4-l}}{2x^6+4x^5+3x^4+5x^3+3x^2+4x+2}dx$
How do i solve it.Help me
Thanks in advance
definite-integrals
definite-integrals
asked Dec 28 '18 at 6:35
jackyjacky
1,188715
1,188715
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Denote $P(x)$ the polynomial of denominator, $$I'(l)=int_0^inftyfrac{x^lln x}{P(x)}dx\
=int_0^1frac{x^lln x}{P(x)}dx+int_1^inftyfrac{x^lln x}{P(x)}dx\
=int_0^1frac{x^lln x}{P(x)}dx-int_0^1frac{x^{4-l}ln x}{P(x)}dxtext{ (Sub $xmapsto 1/x$)}\
=int_0^1frac{(x^l-x^{4-l})ln x}{P(x)}dx$$
$x^l-x^{4-l}>0$ if $0<l<2$,
$x^l-x^{4-l}<0$ if $2<l<5$,
$x^l-x^{4-l}=0$ if $l=2$.
Notice $frac{ln x}{P(x)}<0$ if $0<x<1$, can you continue?
Can you prove it is valid to differentiate under the integral sign?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054634%2fminimum-value-of-il-in-definite-integration%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Denote $P(x)$ the polynomial of denominator, $$I'(l)=int_0^inftyfrac{x^lln x}{P(x)}dx\
=int_0^1frac{x^lln x}{P(x)}dx+int_1^inftyfrac{x^lln x}{P(x)}dx\
=int_0^1frac{x^lln x}{P(x)}dx-int_0^1frac{x^{4-l}ln x}{P(x)}dxtext{ (Sub $xmapsto 1/x$)}\
=int_0^1frac{(x^l-x^{4-l})ln x}{P(x)}dx$$
$x^l-x^{4-l}>0$ if $0<l<2$,
$x^l-x^{4-l}<0$ if $2<l<5$,
$x^l-x^{4-l}=0$ if $l=2$.
Notice $frac{ln x}{P(x)}<0$ if $0<x<1$, can you continue?
Can you prove it is valid to differentiate under the integral sign?
$endgroup$
add a comment |
$begingroup$
Denote $P(x)$ the polynomial of denominator, $$I'(l)=int_0^inftyfrac{x^lln x}{P(x)}dx\
=int_0^1frac{x^lln x}{P(x)}dx+int_1^inftyfrac{x^lln x}{P(x)}dx\
=int_0^1frac{x^lln x}{P(x)}dx-int_0^1frac{x^{4-l}ln x}{P(x)}dxtext{ (Sub $xmapsto 1/x$)}\
=int_0^1frac{(x^l-x^{4-l})ln x}{P(x)}dx$$
$x^l-x^{4-l}>0$ if $0<l<2$,
$x^l-x^{4-l}<0$ if $2<l<5$,
$x^l-x^{4-l}=0$ if $l=2$.
Notice $frac{ln x}{P(x)}<0$ if $0<x<1$, can you continue?
Can you prove it is valid to differentiate under the integral sign?
$endgroup$
add a comment |
$begingroup$
Denote $P(x)$ the polynomial of denominator, $$I'(l)=int_0^inftyfrac{x^lln x}{P(x)}dx\
=int_0^1frac{x^lln x}{P(x)}dx+int_1^inftyfrac{x^lln x}{P(x)}dx\
=int_0^1frac{x^lln x}{P(x)}dx-int_0^1frac{x^{4-l}ln x}{P(x)}dxtext{ (Sub $xmapsto 1/x$)}\
=int_0^1frac{(x^l-x^{4-l})ln x}{P(x)}dx$$
$x^l-x^{4-l}>0$ if $0<l<2$,
$x^l-x^{4-l}<0$ if $2<l<5$,
$x^l-x^{4-l}=0$ if $l=2$.
Notice $frac{ln x}{P(x)}<0$ if $0<x<1$, can you continue?
Can you prove it is valid to differentiate under the integral sign?
$endgroup$
Denote $P(x)$ the polynomial of denominator, $$I'(l)=int_0^inftyfrac{x^lln x}{P(x)}dx\
=int_0^1frac{x^lln x}{P(x)}dx+int_1^inftyfrac{x^lln x}{P(x)}dx\
=int_0^1frac{x^lln x}{P(x)}dx-int_0^1frac{x^{4-l}ln x}{P(x)}dxtext{ (Sub $xmapsto 1/x$)}\
=int_0^1frac{(x^l-x^{4-l})ln x}{P(x)}dx$$
$x^l-x^{4-l}>0$ if $0<l<2$,
$x^l-x^{4-l}<0$ if $2<l<5$,
$x^l-x^{4-l}=0$ if $l=2$.
Notice $frac{ln x}{P(x)}<0$ if $0<x<1$, can you continue?
Can you prove it is valid to differentiate under the integral sign?
answered Dec 28 '18 at 6:52
Kemono ChenKemono Chen
3,1991844
3,1991844
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054634%2fminimum-value-of-il-in-definite-integration%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown