If $a$ and $b$ are constants, calculate the definite integral
$begingroup$
$$int_{-infty}^{+infty} F(x-b) f(x-a) dx$$
$$f(x) = exp(-x-e^{-x}), qquad x in (-infty, +infty)$$
$$F(x) = int_{-infty}^x f(t) dt$$
I calculated already the integral of $F(x)$, which is $exp(-e^{-x})$, but I am stuck on the other one, I have no idea how to calculate the integral of $F(x-a)f(x-b)$.
integration
$endgroup$
add a comment |
$begingroup$
$$int_{-infty}^{+infty} F(x-b) f(x-a) dx$$
$$f(x) = exp(-x-e^{-x}), qquad x in (-infty, +infty)$$
$$F(x) = int_{-infty}^x f(t) dt$$
I calculated already the integral of $F(x)$, which is $exp(-e^{-x})$, but I am stuck on the other one, I have no idea how to calculate the integral of $F(x-a)f(x-b)$.
integration
$endgroup$
$begingroup$
Here's a MathJax tutorial :)
$endgroup$
– Shaun
Dec 28 '18 at 8:26
add a comment |
$begingroup$
$$int_{-infty}^{+infty} F(x-b) f(x-a) dx$$
$$f(x) = exp(-x-e^{-x}), qquad x in (-infty, +infty)$$
$$F(x) = int_{-infty}^x f(t) dt$$
I calculated already the integral of $F(x)$, which is $exp(-e^{-x})$, but I am stuck on the other one, I have no idea how to calculate the integral of $F(x-a)f(x-b)$.
integration
$endgroup$
$$int_{-infty}^{+infty} F(x-b) f(x-a) dx$$
$$f(x) = exp(-x-e^{-x}), qquad x in (-infty, +infty)$$
$$F(x) = int_{-infty}^x f(t) dt$$
I calculated already the integral of $F(x)$, which is $exp(-e^{-x})$, but I am stuck on the other one, I have no idea how to calculate the integral of $F(x-a)f(x-b)$.
integration
integration
edited Dec 28 '18 at 8:39
Rócherz
2,9863821
2,9863821
asked Dec 28 '18 at 8:22
user10471408user10471408
162
162
$begingroup$
Here's a MathJax tutorial :)
$endgroup$
– Shaun
Dec 28 '18 at 8:26
add a comment |
$begingroup$
Here's a MathJax tutorial :)
$endgroup$
– Shaun
Dec 28 '18 at 8:26
$begingroup$
Here's a MathJax tutorial :)
$endgroup$
– Shaun
Dec 28 '18 at 8:26
$begingroup$
Here's a MathJax tutorial :)
$endgroup$
– Shaun
Dec 28 '18 at 8:26
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$int_{-infty}^{infty}F(a-b)f(x-a)dx=int_{-infty}^{infty}e^{-e^{-(x-b)}} e^{-(x-a)} e^{-e^{-(x-a)}} dx=$$
$Rightarrow e^{a} int_{-infty}^{infty} e^{-e^{-x}({e^{b}+e^{a}})} e^{-x} dx$
Now Let, $-e^{-x}=t, rightarrow e^{-x} dx =dt$
$Rightarrow e^{a} int_{-infty}^{0} e^{t{(e^{a}+e^{b}})} dt~~$
$Rightarrow frac{e^a}{e^{a}+e^{b}}.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054679%2fif-a-and-b-are-constants-calculate-the-definite-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$int_{-infty}^{infty}F(a-b)f(x-a)dx=int_{-infty}^{infty}e^{-e^{-(x-b)}} e^{-(x-a)} e^{-e^{-(x-a)}} dx=$$
$Rightarrow e^{a} int_{-infty}^{infty} e^{-e^{-x}({e^{b}+e^{a}})} e^{-x} dx$
Now Let, $-e^{-x}=t, rightarrow e^{-x} dx =dt$
$Rightarrow e^{a} int_{-infty}^{0} e^{t{(e^{a}+e^{b}})} dt~~$
$Rightarrow frac{e^a}{e^{a}+e^{b}}.$
$endgroup$
add a comment |
$begingroup$
$$int_{-infty}^{infty}F(a-b)f(x-a)dx=int_{-infty}^{infty}e^{-e^{-(x-b)}} e^{-(x-a)} e^{-e^{-(x-a)}} dx=$$
$Rightarrow e^{a} int_{-infty}^{infty} e^{-e^{-x}({e^{b}+e^{a}})} e^{-x} dx$
Now Let, $-e^{-x}=t, rightarrow e^{-x} dx =dt$
$Rightarrow e^{a} int_{-infty}^{0} e^{t{(e^{a}+e^{b}})} dt~~$
$Rightarrow frac{e^a}{e^{a}+e^{b}}.$
$endgroup$
add a comment |
$begingroup$
$$int_{-infty}^{infty}F(a-b)f(x-a)dx=int_{-infty}^{infty}e^{-e^{-(x-b)}} e^{-(x-a)} e^{-e^{-(x-a)}} dx=$$
$Rightarrow e^{a} int_{-infty}^{infty} e^{-e^{-x}({e^{b}+e^{a}})} e^{-x} dx$
Now Let, $-e^{-x}=t, rightarrow e^{-x} dx =dt$
$Rightarrow e^{a} int_{-infty}^{0} e^{t{(e^{a}+e^{b}})} dt~~$
$Rightarrow frac{e^a}{e^{a}+e^{b}}.$
$endgroup$
$$int_{-infty}^{infty}F(a-b)f(x-a)dx=int_{-infty}^{infty}e^{-e^{-(x-b)}} e^{-(x-a)} e^{-e^{-(x-a)}} dx=$$
$Rightarrow e^{a} int_{-infty}^{infty} e^{-e^{-x}({e^{b}+e^{a}})} e^{-x} dx$
Now Let, $-e^{-x}=t, rightarrow e^{-x} dx =dt$
$Rightarrow e^{a} int_{-infty}^{0} e^{t{(e^{a}+e^{b}})} dt~~$
$Rightarrow frac{e^a}{e^{a}+e^{b}}.$
edited Dec 28 '18 at 19:02
answered Dec 28 '18 at 10:05
Sachin KumarSachin Kumar
20519
20519
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054679%2fif-a-and-b-are-constants-calculate-the-definite-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Here's a MathJax tutorial :)
$endgroup$
– Shaun
Dec 28 '18 at 8:26