Solving differential equation describing motion in a pendulum












1












$begingroup$


I've been looking at Simple Harmonic Motion in particularly the period of a pendulum. This may seem like physics but my question is tailored towards mathematics. The differential equation is:



$${{d^2theta}over dt^2}+sintheta=0$$



Using the small angle approximation it is found that $T={2pi}sqrt{Lover g}$.



Is it possible to solve the differential equation without using the small angle approximation? If so, what is the actual period of a pendulum?










share|cite|improve this question









$endgroup$












  • $begingroup$
    I don't think there's a nice expression for the trajectory but there's a decently nice formula for the period: en.wikipedia.org/wiki/…
    $endgroup$
    – James Hanson
    Jan 31 '16 at 6:38










  • $begingroup$
    I tried to find the expression for the trajectory, I believe it uses elliptical integrals.
    $endgroup$
    – Nikunj
    Jan 31 '16 at 6:45










  • $begingroup$
    Yeah essentially it will all boil down to elliptic integrals.
    $endgroup$
    – Triatticus
    Jan 31 '16 at 7:18
















1












$begingroup$


I've been looking at Simple Harmonic Motion in particularly the period of a pendulum. This may seem like physics but my question is tailored towards mathematics. The differential equation is:



$${{d^2theta}over dt^2}+sintheta=0$$



Using the small angle approximation it is found that $T={2pi}sqrt{Lover g}$.



Is it possible to solve the differential equation without using the small angle approximation? If so, what is the actual period of a pendulum?










share|cite|improve this question









$endgroup$












  • $begingroup$
    I don't think there's a nice expression for the trajectory but there's a decently nice formula for the period: en.wikipedia.org/wiki/…
    $endgroup$
    – James Hanson
    Jan 31 '16 at 6:38










  • $begingroup$
    I tried to find the expression for the trajectory, I believe it uses elliptical integrals.
    $endgroup$
    – Nikunj
    Jan 31 '16 at 6:45










  • $begingroup$
    Yeah essentially it will all boil down to elliptic integrals.
    $endgroup$
    – Triatticus
    Jan 31 '16 at 7:18














1












1








1





$begingroup$


I've been looking at Simple Harmonic Motion in particularly the period of a pendulum. This may seem like physics but my question is tailored towards mathematics. The differential equation is:



$${{d^2theta}over dt^2}+sintheta=0$$



Using the small angle approximation it is found that $T={2pi}sqrt{Lover g}$.



Is it possible to solve the differential equation without using the small angle approximation? If so, what is the actual period of a pendulum?










share|cite|improve this question









$endgroup$




I've been looking at Simple Harmonic Motion in particularly the period of a pendulum. This may seem like physics but my question is tailored towards mathematics. The differential equation is:



$${{d^2theta}over dt^2}+sintheta=0$$



Using the small angle approximation it is found that $T={2pi}sqrt{Lover g}$.



Is it possible to solve the differential equation without using the small angle approximation? If so, what is the actual period of a pendulum?







ordinary-differential-equations mathematical-physics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 31 '16 at 6:35









JackJack

934




934












  • $begingroup$
    I don't think there's a nice expression for the trajectory but there's a decently nice formula for the period: en.wikipedia.org/wiki/…
    $endgroup$
    – James Hanson
    Jan 31 '16 at 6:38










  • $begingroup$
    I tried to find the expression for the trajectory, I believe it uses elliptical integrals.
    $endgroup$
    – Nikunj
    Jan 31 '16 at 6:45










  • $begingroup$
    Yeah essentially it will all boil down to elliptic integrals.
    $endgroup$
    – Triatticus
    Jan 31 '16 at 7:18


















  • $begingroup$
    I don't think there's a nice expression for the trajectory but there's a decently nice formula for the period: en.wikipedia.org/wiki/…
    $endgroup$
    – James Hanson
    Jan 31 '16 at 6:38










  • $begingroup$
    I tried to find the expression for the trajectory, I believe it uses elliptical integrals.
    $endgroup$
    – Nikunj
    Jan 31 '16 at 6:45










  • $begingroup$
    Yeah essentially it will all boil down to elliptic integrals.
    $endgroup$
    – Triatticus
    Jan 31 '16 at 7:18
















$begingroup$
I don't think there's a nice expression for the trajectory but there's a decently nice formula for the period: en.wikipedia.org/wiki/…
$endgroup$
– James Hanson
Jan 31 '16 at 6:38




$begingroup$
I don't think there's a nice expression for the trajectory but there's a decently nice formula for the period: en.wikipedia.org/wiki/…
$endgroup$
– James Hanson
Jan 31 '16 at 6:38












$begingroup$
I tried to find the expression for the trajectory, I believe it uses elliptical integrals.
$endgroup$
– Nikunj
Jan 31 '16 at 6:45




$begingroup$
I tried to find the expression for the trajectory, I believe it uses elliptical integrals.
$endgroup$
– Nikunj
Jan 31 '16 at 6:45












$begingroup$
Yeah essentially it will all boil down to elliptic integrals.
$endgroup$
– Triatticus
Jan 31 '16 at 7:18




$begingroup$
Yeah essentially it will all boil down to elliptic integrals.
$endgroup$
– Triatticus
Jan 31 '16 at 7:18










1 Answer
1






active

oldest

votes


















3












$begingroup$

Let $ell=$ length measured to the C.G. of the bob, $I=$ moment of inertia of the bob about the end of the string and $E=$ total energy.



begin{align*}
ddot{theta}+omega^{2} sin theta &= 0 \
omega &= sqrt{frac{mgell}{I}} \
k &= sqrt{frac{E}{2mg ell}}
end{align*}



$$
begin{array}{|c|c|c|c|} hline
& k < 1 & k = 1 & k > 1 \ hline
& & & \
displaystyle sin frac{theta}{2} &
koperatorname{sn} (omega t,k) &
tanh omega t &
displaystyle operatorname{sn} left( komega t,frac{1}{k} right) \
& & &\
theta &
2sin^{-1} (koperatorname{sn} (omega t,k)) &
4tan^{-1} e^{omega t}-pi &
displaystyle 2operatorname{am} left( komega t,frac{1}{k} right) \
& & &\
T &
displaystyle frac{4K(k)}{omega} &
infty &
displaystyle frac{2K(frac{1}{k})}{komega} \
& & &\ hline
end{array}$$



For small bob, $Iapprox mell^{2}$.



For $k<1$, amplitude $alpha=2sin^{-1} k$ and $k>1$ it's moving in complete circle.



For $k<<1$, $T=2pi sqrt{frac{I}{m gell}}
left(
1+frac{1}{4} sin^{2} frac{alpha}{2}+ldots
right)$



A plot of $T$ vs. $k$ with $omega=1$ is shown below



enter image description here






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1634148%2fsolving-differential-equation-describing-motion-in-a-pendulum%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Let $ell=$ length measured to the C.G. of the bob, $I=$ moment of inertia of the bob about the end of the string and $E=$ total energy.



    begin{align*}
    ddot{theta}+omega^{2} sin theta &= 0 \
    omega &= sqrt{frac{mgell}{I}} \
    k &= sqrt{frac{E}{2mg ell}}
    end{align*}



    $$
    begin{array}{|c|c|c|c|} hline
    & k < 1 & k = 1 & k > 1 \ hline
    & & & \
    displaystyle sin frac{theta}{2} &
    koperatorname{sn} (omega t,k) &
    tanh omega t &
    displaystyle operatorname{sn} left( komega t,frac{1}{k} right) \
    & & &\
    theta &
    2sin^{-1} (koperatorname{sn} (omega t,k)) &
    4tan^{-1} e^{omega t}-pi &
    displaystyle 2operatorname{am} left( komega t,frac{1}{k} right) \
    & & &\
    T &
    displaystyle frac{4K(k)}{omega} &
    infty &
    displaystyle frac{2K(frac{1}{k})}{komega} \
    & & &\ hline
    end{array}$$



    For small bob, $Iapprox mell^{2}$.



    For $k<1$, amplitude $alpha=2sin^{-1} k$ and $k>1$ it's moving in complete circle.



    For $k<<1$, $T=2pi sqrt{frac{I}{m gell}}
    left(
    1+frac{1}{4} sin^{2} frac{alpha}{2}+ldots
    right)$



    A plot of $T$ vs. $k$ with $omega=1$ is shown below



    enter image description here






    share|cite|improve this answer











    $endgroup$


















      3












      $begingroup$

      Let $ell=$ length measured to the C.G. of the bob, $I=$ moment of inertia of the bob about the end of the string and $E=$ total energy.



      begin{align*}
      ddot{theta}+omega^{2} sin theta &= 0 \
      omega &= sqrt{frac{mgell}{I}} \
      k &= sqrt{frac{E}{2mg ell}}
      end{align*}



      $$
      begin{array}{|c|c|c|c|} hline
      & k < 1 & k = 1 & k > 1 \ hline
      & & & \
      displaystyle sin frac{theta}{2} &
      koperatorname{sn} (omega t,k) &
      tanh omega t &
      displaystyle operatorname{sn} left( komega t,frac{1}{k} right) \
      & & &\
      theta &
      2sin^{-1} (koperatorname{sn} (omega t,k)) &
      4tan^{-1} e^{omega t}-pi &
      displaystyle 2operatorname{am} left( komega t,frac{1}{k} right) \
      & & &\
      T &
      displaystyle frac{4K(k)}{omega} &
      infty &
      displaystyle frac{2K(frac{1}{k})}{komega} \
      & & &\ hline
      end{array}$$



      For small bob, $Iapprox mell^{2}$.



      For $k<1$, amplitude $alpha=2sin^{-1} k$ and $k>1$ it's moving in complete circle.



      For $k<<1$, $T=2pi sqrt{frac{I}{m gell}}
      left(
      1+frac{1}{4} sin^{2} frac{alpha}{2}+ldots
      right)$



      A plot of $T$ vs. $k$ with $omega=1$ is shown below



      enter image description here






      share|cite|improve this answer











      $endgroup$
















        3












        3








        3





        $begingroup$

        Let $ell=$ length measured to the C.G. of the bob, $I=$ moment of inertia of the bob about the end of the string and $E=$ total energy.



        begin{align*}
        ddot{theta}+omega^{2} sin theta &= 0 \
        omega &= sqrt{frac{mgell}{I}} \
        k &= sqrt{frac{E}{2mg ell}}
        end{align*}



        $$
        begin{array}{|c|c|c|c|} hline
        & k < 1 & k = 1 & k > 1 \ hline
        & & & \
        displaystyle sin frac{theta}{2} &
        koperatorname{sn} (omega t,k) &
        tanh omega t &
        displaystyle operatorname{sn} left( komega t,frac{1}{k} right) \
        & & &\
        theta &
        2sin^{-1} (koperatorname{sn} (omega t,k)) &
        4tan^{-1} e^{omega t}-pi &
        displaystyle 2operatorname{am} left( komega t,frac{1}{k} right) \
        & & &\
        T &
        displaystyle frac{4K(k)}{omega} &
        infty &
        displaystyle frac{2K(frac{1}{k})}{komega} \
        & & &\ hline
        end{array}$$



        For small bob, $Iapprox mell^{2}$.



        For $k<1$, amplitude $alpha=2sin^{-1} k$ and $k>1$ it's moving in complete circle.



        For $k<<1$, $T=2pi sqrt{frac{I}{m gell}}
        left(
        1+frac{1}{4} sin^{2} frac{alpha}{2}+ldots
        right)$



        A plot of $T$ vs. $k$ with $omega=1$ is shown below



        enter image description here






        share|cite|improve this answer











        $endgroup$



        Let $ell=$ length measured to the C.G. of the bob, $I=$ moment of inertia of the bob about the end of the string and $E=$ total energy.



        begin{align*}
        ddot{theta}+omega^{2} sin theta &= 0 \
        omega &= sqrt{frac{mgell}{I}} \
        k &= sqrt{frac{E}{2mg ell}}
        end{align*}



        $$
        begin{array}{|c|c|c|c|} hline
        & k < 1 & k = 1 & k > 1 \ hline
        & & & \
        displaystyle sin frac{theta}{2} &
        koperatorname{sn} (omega t,k) &
        tanh omega t &
        displaystyle operatorname{sn} left( komega t,frac{1}{k} right) \
        & & &\
        theta &
        2sin^{-1} (koperatorname{sn} (omega t,k)) &
        4tan^{-1} e^{omega t}-pi &
        displaystyle 2operatorname{am} left( komega t,frac{1}{k} right) \
        & & &\
        T &
        displaystyle frac{4K(k)}{omega} &
        infty &
        displaystyle frac{2K(frac{1}{k})}{komega} \
        & & &\ hline
        end{array}$$



        For small bob, $Iapprox mell^{2}$.



        For $k<1$, amplitude $alpha=2sin^{-1} k$ and $k>1$ it's moving in complete circle.



        For $k<<1$, $T=2pi sqrt{frac{I}{m gell}}
        left(
        1+frac{1}{4} sin^{2} frac{alpha}{2}+ldots
        right)$



        A plot of $T$ vs. $k$ with $omega=1$ is shown below



        enter image description here







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 16 '18 at 12:55

























        answered Jan 31 '16 at 7:08









        Ng Chung TakNg Chung Tak

        14.8k31334




        14.8k31334






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1634148%2fsolving-differential-equation-describing-motion-in-a-pendulum%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen