Wärmeleitungsgleichung






Modell eines Heizrohres, das über eine Metallverstrebung abgekühlt wird


Die Wärmeleitungsgleichung oder Diffusionsgleichung ist eine partielle Differentialgleichung. Sie ist das typische Beispiel einer parabolischen Differentialgleichung, beschreibt den Zusammenhang zwischen der zeitlichen und der räumlichen Änderung der Temperatur an einem Ort in einem Körper und eignet sich zur Berechnung instationärer Temperaturfelder. Im eindimensionalen Fall (ohne Wärmequellen) besagt sie, dass die (zeitliche) Ableitung der Temperatur das Produkt aus der zweiten räumlichen Ableitung und der Temperaturleitfähigkeit ist. Dies hat eine anschauliche Bedeutung: Wenn die zweite räumliche Ableitung an einem Ort ungleich null ist, so unterscheiden sich die ersten Ableitungen kurz vor und hinter diesem Ort. Der Wärmestrom, der zu diesem Ort fließt, unterscheidet sich also nach dem Fourierschen Gesetz von dem, der von ihm weg fließt. Es muss sich also die Temperatur an diesem Ort mit der Zeit ändern. Mathematisch sind Wärmeleitungsgleichung und Diffusionsgleichung identisch, statt Temperatur und Temperaturleitfähigkeit treten hier Konzentration und Diffusionskoeffizient auf. Die Wärmeleitungsgleichung lässt sich aus dem Energieerhaltungssatz und dem Fourierschen Gesetz der Wärmeleitung herleiten. Die Fundamentallösung der Wärmeleitungsgleichung wird Wärmeleitungskern genannt.




Inhaltsverzeichnis






  • 1 Formulierung


    • 1.1 Homogene Gleichung


    • 1.2 Nichthomogene Gleichung




  • 2 Klassische Lösungen


    • 2.1 Fundamentallösung


    • 2.2 Lösungsformel für das homogene Cauchyproblem


    • 2.3 Lösungsformel für das inhomogene Cauchyproblem mit Null-Anfangsdaten


    • 2.4 Allgemeine Lösungsformel


    • 2.5 Weitere Lösungen




  • 3 Eigenschaften klassischer Lösungen


    • 3.1 Maximumprinzip


    • 3.2 Glättungseigenschaft




  • 4 Siehe auch


  • 5 Literatur


  • 6 Weblinks


  • 7 Einzelnachweise





Formulierung |



Homogene Gleichung |


In homogenen Medien lautet die Wärmeleitungsgleichung


tu(x→,t)−u(x→,t)=0,{displaystyle {frac {partial }{partial t}}u({vec {x}},t)-aDelta u({vec {x}},t)=0,}{frac  {partial }{partial t}}u({vec  x},t)-aDelta u({vec  {x}},t)=0,

wobei u(x→,t){displaystyle u({vec {x}},t)}u({vec  x},t) die Temperatur an der Stelle x→{displaystyle {vec {x}}}{vec {x}} zum Zeitpunkt t{displaystyle t}t, Δ{displaystyle Delta }Delta der Laplace-Operator bezüglich x→{displaystyle {vec {x}}}{vec {x}} und die Konstante a>0{displaystyle a>0}a>0 die Temperaturleitfähigkeit des Mediums ist.


Im stationären Fall, wenn also die Zeitableitung u∂t{displaystyle {tfrac {partial u}{partial t}}}{tfrac  {partial u}{partial t}} null ist, geht die Gleichung in die Laplace-Gleichung Δu=0{displaystyle Delta u=0}Delta u=0 über.


Eine häufig verwendete Vereinfachung berücksichtigt nur eine Raumdimension und beschreibt zum Beispiel die zeitliche Änderung der Temperatur in einem dünnen, relativ dazu langen Stab aus festem Material. Dadurch wird der Laplace-Operator zu einer einfachen zweiten Ableitung:


tu(x,t)−a∂2∂x2u(x,t)=0{displaystyle {frac {partial }{partial t}}u(x,t)-a{frac {partial ^{2}}{partial x^{2}}}{u(x,t)}=0}<br />
frac{partial}{partial t} u(x,t) - afrac{partial^2}{partial x^2} {u(x,t)} = 0<br />


Nichthomogene Gleichung |


In Medien mit zusätzlichen Wärmequellen (z. B. durch Joulesche Wärme oder eine chemische Reaktion) lautet die dann inhomogene Wärmeleitungsgleichung


tu(x→,t)−u(x→,t)=f(x→,t),{displaystyle {frac {partial }{partial t}}u({vec {x}},t)-aDelta u({vec {x}},t)=f({vec {x}},t),}{frac  {partial }{partial t}}u({vec  x},t)-aDelta u({vec  {x}},t)=f({vec  {x}},t),

wobei die rechte Seite f{displaystyle f}f der Quotient aus volumenbezogener Wärmestromdichte und der (volumenbezogenen) Wärmekapazität ist. Im stationären Fall, wenn also die Zeitableitung null ist, geht die Gleichung in die Poisson-Gleichung über.



Klassische Lösungen |



Fundamentallösung |


Eine spezielle Lösung der Wärmeleitungsgleichung ist die sogenannte Fundamentallösung der Wärmeleitungsgleichung. Diese lautet bei einem eindimensionalen Problem


H(x,t)=14πatexp⁡(−x24at){displaystyle H(x,t)={frac {1}{sqrt {4pi at}}}exp left(-{frac {x^{2}}{4at}}right)}<br />
H(x,t)=frac{1}{sqrt{4pi a t}} expleft(-frac{x^2}{4at}right)<br />

und bei einem n{displaystyle n}n-dimensionalen Problem


H(x→;t)=1(4πat)n/2exp⁡(−x→24at),{displaystyle H({vec {x}};t)={frac {1}{(4pi at)^{n/2}}}exp left(-{frac {|{vec {x}}|^{2}}{4at}}right),}<br />
H(vec{x};t)=frac{1}{(4pi a t)^{n/2}} exp left(-frac{|vec{x}|^2}{4at}right),<br />

wobei x→2=∑k=1nxk2{displaystyle textstyle |{vec {x}}|^{2}=sum _{k=1}^{n}x_{k}^{2}}textstyle |{vec  {x}}|^{2}=sum _{{k=1}}^{n}x_{k}^{2} das Quadrat der euklidischen Norm von x→{displaystyle {vec {x}}}{vec {x}} ist.


H{displaystyle H}H wird auch als Wärmeleitungskern (oder engl. heat kernel) bezeichnet. Die funktionale Form entspricht der einer Gauß'schen Normalverteilung mit σ2=2at{displaystyle sigma ^{2}=2at}sigma ^{2}=2at.



Lösungsformel für das homogene Cauchyproblem |


Mit Hilfe der oben angegebenen Fundamentallösung der Wärmeleitungsgleichung kann man für das homogene Cauchyproblem der Wärmeleitungsgleichung eine allgemeine Lösungsformel angeben. Dazu stellt man für gegebene Anfangsdaten u0{displaystyle u_{0}}u_0 zur Zeit t=0{displaystyle t=0}t=0 zusätzlich die Anfangsbedingung


 x→Rn:u(x→,t=0)=u0(x→){displaystyle forall {vec {x}}in mathbb {R} ^{n}:u({vec {x}},t=0)=u_{0}({vec {x}})}<br />
forall vec{x} in R^n: u(vec{x},t=0) = u_0(vec{x})<br />

in Form einer Delta-Distribution dar. Die Lösung u(x→,t){displaystyle u({vec {x}},t)}u({vec  {x}},t) des homogenen Anfangswertproblem erhält man für t>0{displaystyle t>0}t>0 durch die Faltung der Fundamentallösung H{displaystyle H}H mit den gegebenen Anfangsdaten u0{displaystyle u_{0}}u_0:


u(x→,t)=(H∗u0)(x→,t)=∫RnH(x→y→,t)u0(y→)dy→{displaystyle u({vec {x}},t)=(H*u_{0})({vec {x}},t)=int _{mathbb {R} ^{n}}H({vec {x}}-{vec {y}},t)u_{0}({vec {y}}),d{vec {y}}}<br />
u(vec{x},t) = (H * u_0)(vec{x},t) = int_{R^n} H(vec{x} - vec{y},t) u_0(vec{y}),dvec{y}<br />


Lösungsformel für das inhomogene Cauchyproblem mit Null-Anfangsdaten |


Für das inhomogene Anfangswertproblem mit Null-Anfangsdaten u0(x→)=0{displaystyle u_{0}({vec {x}})=0}u_{0}({vec  {x}})=0 erhalten wir analog zum homogenen Fall durch die Faltung der Fundamentallösung H{displaystyle H}H mit der gegebenen rechten Seite f{displaystyle f}f als Lösungsformel:


u(x→,t)=(H∗f)(x→,t)=∫0t∫RnH(x→y→,t−s)f(y→,s)dy→ds{displaystyle u({vec {x}},t)=(H*f)({vec {x}},t)=int _{0}^{t}int _{mathbb {R} ^{n}}H({vec {x}}-{vec {y}},t-s)f({vec {y}},s),d{vec {y}},ds}<br />
u(vec{x},t) = (H * f)(vec{x},t) = int_0^t int_{R^n} H(vec{x} - vec{y},t-s) f(vec{y},s),dvec{y},ds<br />


Allgemeine Lösungsformel |


Die Lösungsformel für das inhomogene Cauchyproblem mit beliebigen Anfangsdaten erhalten wir aufgrund der Linearität der Wärmeleitungsgleichung durch Addition der Lösung des homogenen Cauchyproblems mit der Lösung des inhomogenen Cauchyproblems mit Null-Anfangsdaten, insgesamt also:


u(x→,t)=∫RnH(x→y→,t)u0(y→)dy→+∫0t∫RnH(x→y→,t−s)f(y→,s)dy→ds{displaystyle u({vec {x}},t)=int _{mathbb {R} ^{n}}H({vec {x}}-{vec {y}},t)u_{0}({vec {y}}),d{vec {y}}+int _{0}^{t}int _{mathbb {R} ^{n}}H({vec {x}}-{vec {y}},t-s)f({vec {y}},s),d{vec {y}},ds}<br />
u(vec{x},t) = int_{R^n} H(vec{x} - vec{y},t) u_0(vec{y}),dvec{y}<br />
             + int_0^t int_{R^n} H(vec{x} - vec{y},t-s) f(vec{y},s),dvec{y},ds<br />


Weitere Lösungen |


In manchen Fällen kann man Lösungen der Gleichung mit Hilfe des Symmetrieansatzes finden:


u(x,t)=f(xat){displaystyle u(x,t)=fleft({frac {x}{sqrt {at}}}right)}<br />
u(x,t) = fleft(frac{x}{sqrt{at}}right)<br />

Dies führt auf die folgende gewöhnliche Differentialgleichung für f{displaystyle f}f:


ξf′)=−2f′){displaystyle xi f^{prime }(xi )=-2f^{prime prime }(xi )}<br />
xi f^prime(xi) = -2 f^{primeprime}(xi)<br />

Eine weitere eindimensionale Lösung lautet


u(x,t)=sin⁡(2c2at−xc)exp⁡(−cx),{displaystyle u(x,t)=sin left(2c^{2}at-xcright)exp(-cx),}u(x,t)=sin left(2c^{2}at-xcright)exp(-cx),

wobei c{displaystyle c}c eine Konstante ist. Mit ihr kann man das Wärmespeicherungsverhalten modellieren, wenn ein Gegenstand (mit einer zeitlich sinusförmigen Temperatur) erhitzt wird.



Eigenschaften klassischer Lösungen |



Maximumprinzip |




Lösung einer zweidimensionalen Wärmeleitungsgleichung


Sei u{displaystyle u}u eine Funktion, die die Temperatur eines Festkörpers in Abhängigkeit vom Ort und der Zeit angibt, also u=u(x1,x2,x3,t){displaystyle u=u(x_{1},x_{2},x_{3},t)}u=u(x_{1},x_{2},x_{3},t). u{displaystyle u}u ist zeitabhängig, weil sich die thermische Energie mit der Zeit über das Material ausbreitet. Die physikalische Selbstverständlichkeit, dass Wärme nicht aus dem Nichts entsteht, schlägt sich mathematisch im Maximumprinzip nieder: Der Maximalwert (über Zeit und Raum) der Temperatur wird entweder am Anfang des betrachteten Zeitintervalls oder am Rand des betrachteten Raumbereichs angenommen. Diese Eigenschaft gilt allgemein bei parabolischen partiellen Differentialgleichungen und kann leicht bewiesen werden.



Glättungseigenschaft |


Eine weitere interessante Eigenschaft ist, dass selbst wenn u{displaystyle u}u zum Zeitpunkt t=t0{displaystyle t=t_{0}}t=t_0 eine Unstetigkeitsstelle hat, die Funktion u{displaystyle u}u zu jedem Zeitpunkt t>t0{displaystyle t>t_{0}}t>t_{0} stetig im Raum ist.[1] Wenn also zwei Metallstücke verschiedener Temperatur bei t=t0{displaystyle t=t_{0}}t=t_0 fest verbunden werden, wird sich (nach dieser Modellierung) an der Verbindungsstelle schlagartig die mittlere Temperatur einstellen und die Temperaturkurve stetig durch beide Werkstücke verlaufen.



Siehe auch |



  • Poröse-Medien-Gleichung

  • Crank-Nicolson-Verfahren

  • Konvektions-Diffusions-Gleichung



Literatur |



  • Gerhard Dziuk: Theorie und Numerik partieller Differentialgleichungen. de Gruyter, Berlin 2010, ISBN 978-3-11-014843-5, S. 183–253.


  • Lawrence C. Evans: Partial Differential Equations. Reprinted with corrections. American Mathematical Society, Providence RI 2008, ISBN 978-0-8218-0772-9 (Graduate studies in mathematics 19).

  • John Rozier Cannon: The One–Dimensional Heat Equation. Addison-Wesley Publishing Company / Cambridge University Press, 1984, ISBN 978-0-521-30243-2.



Weblinks |



 Commons: Wärmeleitungsgleichung – Sammlung von Bildern, Videos und Audiodateien


Einzelnachweise |




  1. Lawrence C. Evans: Partial Differential Equations. American Mathematical Society, 1998, ISBN 0-8218-0772-2, S. 49. 




Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen