tensorflow dataset api input for training tuple object has no ndims attribute
so I'm trying to train a GAN to color images using a the new TensorFlow data set API
and I cant get it to work
I'm trying to use the simple one shot iterator for my data set and I think it might be causing the problem but I can't figure out why
so what I'm asking is
can someone tell me whats wrong with the code
code:
creating the data set
def get_next():
#where gray_ls is just a list of image paths
gray_ds = tf.data.Dataset.from_tensor_slices(gray_ls).shuffle(50).map(in_parser).batch(30).repeat()
print(f"output types = {gray_ds.output_types}") # --> output types = <dtype: 'float32'>
print(f"output shapes = {gray_ds.output_shapes}") # --> output shapes = (?, ?, ?, ?)
gray_iter = gray_ds.make_one_shot_iterator()
next_gray = gray_iter.get_next()
# next_color is the same as next gray just different images
return next_color, next_gray
# mapping function
def in_parser(img_path):
img_file = tf.read_file(img_path)
img = tf.image.decode_image(img_file,channels=3)
img = tf.image.random_flip_left_right(img)
img = tf.image.random_brightness(img, max_delta = 0.1)
img = tf.image.random_contrast(img, lower = 0.9, upper = 1.1)
img = tf.cast(img, tf.float32)
img = img/255.0
print(img)
return img
#some global vars
stddev = 0.02
decay = 0.9
epsilon = 1e-4
k_size = [5,5]
strides = [2,2]
def gen(input, is_train):
#chanel number
c1 , c2 ,c3 ,c4 = 64, 128, 256, 512
with tf.variable_scope("gen",reuse=tf.AUTO_REUSE):
#this is where it crashes
conv1 = tf.layers.conv2d(input,c1,k_size,strides,'SAME',
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
name='conv1')
bn1 = tf.contrib.layers.batch_norm(conv1,is_training=is_train, updates_collections=None,
decay=decay,epsilon=epsilon,scope='bn1')
ac1 = lrelu(bn1,'ac1')
#there is more code after this
trying to run it:
next_color, next_gray = get_next()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
foo = sess.run(next_gray)
print(f"foo ndims : {foo.ndim}") # --> foo ndims : 4
gen_image = gen(foo, True)
# some more code after this
now this rasises an error:
AttributeError: 'tuple' object has no attribute 'ndims'
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-1-701a9276e633> in <module>()
94
95
---> 96 train()
<ipython-input-1-701a9276e633> in train()
41 # print(foo.shape)
42 print("==========================+==============")
---> 43 gen_image = gen(foo, True)
44 # gen_image = gen(next_gray, True)
45 print("==========================+==============")
~Desktopcodepythonimage_processingUntitled FolderUntitled Foldertesting1_2my_gen.py in gen(input, is_train)
30 conv1 = tf.layers.conv2d(input,c1,k_size,strides,'SAME',
31 kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
---> 32 name='conv1')
33
34 bn1 = tf.contrib.layers.batch_norm(conv1,is_training=is_train, updates_collections=None,
~Anaconda2envsimage_reclibsite-packagestensorflowpythonlayersconvolutional.py in conv2d(inputs, filters, kernel_size, strides, padding, data_format, dilation_rate, activation, use_bias, kernel_initializer, bias_initializer, kernel_regularizer, bias_regularizer, activity_regularizer, kernel_constraint, bias_constraint, trainable, name, reuse)
423 _reuse=reuse,
424 _scope=name)
--> 425 return layer.apply(inputs)
426
427
~Anaconda2envsimage_reclibsite-packagestensorflowpythonkerasenginebase_layer.py in apply(self, inputs, *args, **kwargs)
803 Output tensor(s).
804 """
--> 805 return self.__call__(inputs, *args, **kwargs)
806
807 def _set_learning_phase_metadata(self, inputs, outputs):
~Anaconda2envsimage_reclibsite-packagestensorflowpythonlayersbase.py in __call__(self, inputs, *args, **kwargs)
360
361 # Actually call layer
--> 362 outputs = super(Layer, self).__call__(inputs, *args, **kwargs)
363
364 if not context.executing_eagerly():
~Anaconda2envsimage_reclibsite-packagestensorflowpythonkerasenginebase_layer.py in __call__(self, inputs, *args, **kwargs)
718
719 # Check input assumptions set before layer building, e.g. input rank.
--> 720 self._assert_input_compatibility(inputs)
721 if input_list and self._dtype is None:
722 try:
~Anaconda2envsimage_reclibsite-packagestensorflowpythonkerasenginebase_layer.py in _assert_input_compatibility(self, inputs)
1408 spec.min_ndim is not None or
1409 spec.max_ndim is not None):
-> 1410 if x.shape.ndims is None:
1411 raise ValueError('Input ' + str(input_index) + ' of layer ' +
1412 self.name + ' is incompatible with the layer: '
AttributeError: 'tuple' object has no attribute 'ndims'
thanks in advance
python tensorflow tensorflow-datasets
add a comment |
so I'm trying to train a GAN to color images using a the new TensorFlow data set API
and I cant get it to work
I'm trying to use the simple one shot iterator for my data set and I think it might be causing the problem but I can't figure out why
so what I'm asking is
can someone tell me whats wrong with the code
code:
creating the data set
def get_next():
#where gray_ls is just a list of image paths
gray_ds = tf.data.Dataset.from_tensor_slices(gray_ls).shuffle(50).map(in_parser).batch(30).repeat()
print(f"output types = {gray_ds.output_types}") # --> output types = <dtype: 'float32'>
print(f"output shapes = {gray_ds.output_shapes}") # --> output shapes = (?, ?, ?, ?)
gray_iter = gray_ds.make_one_shot_iterator()
next_gray = gray_iter.get_next()
# next_color is the same as next gray just different images
return next_color, next_gray
# mapping function
def in_parser(img_path):
img_file = tf.read_file(img_path)
img = tf.image.decode_image(img_file,channels=3)
img = tf.image.random_flip_left_right(img)
img = tf.image.random_brightness(img, max_delta = 0.1)
img = tf.image.random_contrast(img, lower = 0.9, upper = 1.1)
img = tf.cast(img, tf.float32)
img = img/255.0
print(img)
return img
#some global vars
stddev = 0.02
decay = 0.9
epsilon = 1e-4
k_size = [5,5]
strides = [2,2]
def gen(input, is_train):
#chanel number
c1 , c2 ,c3 ,c4 = 64, 128, 256, 512
with tf.variable_scope("gen",reuse=tf.AUTO_REUSE):
#this is where it crashes
conv1 = tf.layers.conv2d(input,c1,k_size,strides,'SAME',
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
name='conv1')
bn1 = tf.contrib.layers.batch_norm(conv1,is_training=is_train, updates_collections=None,
decay=decay,epsilon=epsilon,scope='bn1')
ac1 = lrelu(bn1,'ac1')
#there is more code after this
trying to run it:
next_color, next_gray = get_next()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
foo = sess.run(next_gray)
print(f"foo ndims : {foo.ndim}") # --> foo ndims : 4
gen_image = gen(foo, True)
# some more code after this
now this rasises an error:
AttributeError: 'tuple' object has no attribute 'ndims'
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-1-701a9276e633> in <module>()
94
95
---> 96 train()
<ipython-input-1-701a9276e633> in train()
41 # print(foo.shape)
42 print("==========================+==============")
---> 43 gen_image = gen(foo, True)
44 # gen_image = gen(next_gray, True)
45 print("==========================+==============")
~Desktopcodepythonimage_processingUntitled FolderUntitled Foldertesting1_2my_gen.py in gen(input, is_train)
30 conv1 = tf.layers.conv2d(input,c1,k_size,strides,'SAME',
31 kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
---> 32 name='conv1')
33
34 bn1 = tf.contrib.layers.batch_norm(conv1,is_training=is_train, updates_collections=None,
~Anaconda2envsimage_reclibsite-packagestensorflowpythonlayersconvolutional.py in conv2d(inputs, filters, kernel_size, strides, padding, data_format, dilation_rate, activation, use_bias, kernel_initializer, bias_initializer, kernel_regularizer, bias_regularizer, activity_regularizer, kernel_constraint, bias_constraint, trainable, name, reuse)
423 _reuse=reuse,
424 _scope=name)
--> 425 return layer.apply(inputs)
426
427
~Anaconda2envsimage_reclibsite-packagestensorflowpythonkerasenginebase_layer.py in apply(self, inputs, *args, **kwargs)
803 Output tensor(s).
804 """
--> 805 return self.__call__(inputs, *args, **kwargs)
806
807 def _set_learning_phase_metadata(self, inputs, outputs):
~Anaconda2envsimage_reclibsite-packagestensorflowpythonlayersbase.py in __call__(self, inputs, *args, **kwargs)
360
361 # Actually call layer
--> 362 outputs = super(Layer, self).__call__(inputs, *args, **kwargs)
363
364 if not context.executing_eagerly():
~Anaconda2envsimage_reclibsite-packagestensorflowpythonkerasenginebase_layer.py in __call__(self, inputs, *args, **kwargs)
718
719 # Check input assumptions set before layer building, e.g. input rank.
--> 720 self._assert_input_compatibility(inputs)
721 if input_list and self._dtype is None:
722 try:
~Anaconda2envsimage_reclibsite-packagestensorflowpythonkerasenginebase_layer.py in _assert_input_compatibility(self, inputs)
1408 spec.min_ndim is not None or
1409 spec.max_ndim is not None):
-> 1410 if x.shape.ndims is None:
1411 raise ValueError('Input ' + str(input_index) + ' of layer ' +
1412 self.name + ' is incompatible with the layer: '
AttributeError: 'tuple' object has no attribute 'ndims'
thanks in advance
python tensorflow tensorflow-datasets
Please include the error in the body of your question, it is OK to copy and paste the error in as text, just format it as a code block and it will render OK.
– SuperShoot
Nov 25 '18 at 10:19
What isgen
? That's where the error happens.
– Matthieu Brucher
Nov 25 '18 at 10:27
add a comment |
so I'm trying to train a GAN to color images using a the new TensorFlow data set API
and I cant get it to work
I'm trying to use the simple one shot iterator for my data set and I think it might be causing the problem but I can't figure out why
so what I'm asking is
can someone tell me whats wrong with the code
code:
creating the data set
def get_next():
#where gray_ls is just a list of image paths
gray_ds = tf.data.Dataset.from_tensor_slices(gray_ls).shuffle(50).map(in_parser).batch(30).repeat()
print(f"output types = {gray_ds.output_types}") # --> output types = <dtype: 'float32'>
print(f"output shapes = {gray_ds.output_shapes}") # --> output shapes = (?, ?, ?, ?)
gray_iter = gray_ds.make_one_shot_iterator()
next_gray = gray_iter.get_next()
# next_color is the same as next gray just different images
return next_color, next_gray
# mapping function
def in_parser(img_path):
img_file = tf.read_file(img_path)
img = tf.image.decode_image(img_file,channels=3)
img = tf.image.random_flip_left_right(img)
img = tf.image.random_brightness(img, max_delta = 0.1)
img = tf.image.random_contrast(img, lower = 0.9, upper = 1.1)
img = tf.cast(img, tf.float32)
img = img/255.0
print(img)
return img
#some global vars
stddev = 0.02
decay = 0.9
epsilon = 1e-4
k_size = [5,5]
strides = [2,2]
def gen(input, is_train):
#chanel number
c1 , c2 ,c3 ,c4 = 64, 128, 256, 512
with tf.variable_scope("gen",reuse=tf.AUTO_REUSE):
#this is where it crashes
conv1 = tf.layers.conv2d(input,c1,k_size,strides,'SAME',
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
name='conv1')
bn1 = tf.contrib.layers.batch_norm(conv1,is_training=is_train, updates_collections=None,
decay=decay,epsilon=epsilon,scope='bn1')
ac1 = lrelu(bn1,'ac1')
#there is more code after this
trying to run it:
next_color, next_gray = get_next()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
foo = sess.run(next_gray)
print(f"foo ndims : {foo.ndim}") # --> foo ndims : 4
gen_image = gen(foo, True)
# some more code after this
now this rasises an error:
AttributeError: 'tuple' object has no attribute 'ndims'
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-1-701a9276e633> in <module>()
94
95
---> 96 train()
<ipython-input-1-701a9276e633> in train()
41 # print(foo.shape)
42 print("==========================+==============")
---> 43 gen_image = gen(foo, True)
44 # gen_image = gen(next_gray, True)
45 print("==========================+==============")
~Desktopcodepythonimage_processingUntitled FolderUntitled Foldertesting1_2my_gen.py in gen(input, is_train)
30 conv1 = tf.layers.conv2d(input,c1,k_size,strides,'SAME',
31 kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
---> 32 name='conv1')
33
34 bn1 = tf.contrib.layers.batch_norm(conv1,is_training=is_train, updates_collections=None,
~Anaconda2envsimage_reclibsite-packagestensorflowpythonlayersconvolutional.py in conv2d(inputs, filters, kernel_size, strides, padding, data_format, dilation_rate, activation, use_bias, kernel_initializer, bias_initializer, kernel_regularizer, bias_regularizer, activity_regularizer, kernel_constraint, bias_constraint, trainable, name, reuse)
423 _reuse=reuse,
424 _scope=name)
--> 425 return layer.apply(inputs)
426
427
~Anaconda2envsimage_reclibsite-packagestensorflowpythonkerasenginebase_layer.py in apply(self, inputs, *args, **kwargs)
803 Output tensor(s).
804 """
--> 805 return self.__call__(inputs, *args, **kwargs)
806
807 def _set_learning_phase_metadata(self, inputs, outputs):
~Anaconda2envsimage_reclibsite-packagestensorflowpythonlayersbase.py in __call__(self, inputs, *args, **kwargs)
360
361 # Actually call layer
--> 362 outputs = super(Layer, self).__call__(inputs, *args, **kwargs)
363
364 if not context.executing_eagerly():
~Anaconda2envsimage_reclibsite-packagestensorflowpythonkerasenginebase_layer.py in __call__(self, inputs, *args, **kwargs)
718
719 # Check input assumptions set before layer building, e.g. input rank.
--> 720 self._assert_input_compatibility(inputs)
721 if input_list and self._dtype is None:
722 try:
~Anaconda2envsimage_reclibsite-packagestensorflowpythonkerasenginebase_layer.py in _assert_input_compatibility(self, inputs)
1408 spec.min_ndim is not None or
1409 spec.max_ndim is not None):
-> 1410 if x.shape.ndims is None:
1411 raise ValueError('Input ' + str(input_index) + ' of layer ' +
1412 self.name + ' is incompatible with the layer: '
AttributeError: 'tuple' object has no attribute 'ndims'
thanks in advance
python tensorflow tensorflow-datasets
so I'm trying to train a GAN to color images using a the new TensorFlow data set API
and I cant get it to work
I'm trying to use the simple one shot iterator for my data set and I think it might be causing the problem but I can't figure out why
so what I'm asking is
can someone tell me whats wrong with the code
code:
creating the data set
def get_next():
#where gray_ls is just a list of image paths
gray_ds = tf.data.Dataset.from_tensor_slices(gray_ls).shuffle(50).map(in_parser).batch(30).repeat()
print(f"output types = {gray_ds.output_types}") # --> output types = <dtype: 'float32'>
print(f"output shapes = {gray_ds.output_shapes}") # --> output shapes = (?, ?, ?, ?)
gray_iter = gray_ds.make_one_shot_iterator()
next_gray = gray_iter.get_next()
# next_color is the same as next gray just different images
return next_color, next_gray
# mapping function
def in_parser(img_path):
img_file = tf.read_file(img_path)
img = tf.image.decode_image(img_file,channels=3)
img = tf.image.random_flip_left_right(img)
img = tf.image.random_brightness(img, max_delta = 0.1)
img = tf.image.random_contrast(img, lower = 0.9, upper = 1.1)
img = tf.cast(img, tf.float32)
img = img/255.0
print(img)
return img
#some global vars
stddev = 0.02
decay = 0.9
epsilon = 1e-4
k_size = [5,5]
strides = [2,2]
def gen(input, is_train):
#chanel number
c1 , c2 ,c3 ,c4 = 64, 128, 256, 512
with tf.variable_scope("gen",reuse=tf.AUTO_REUSE):
#this is where it crashes
conv1 = tf.layers.conv2d(input,c1,k_size,strides,'SAME',
kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
name='conv1')
bn1 = tf.contrib.layers.batch_norm(conv1,is_training=is_train, updates_collections=None,
decay=decay,epsilon=epsilon,scope='bn1')
ac1 = lrelu(bn1,'ac1')
#there is more code after this
trying to run it:
next_color, next_gray = get_next()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
foo = sess.run(next_gray)
print(f"foo ndims : {foo.ndim}") # --> foo ndims : 4
gen_image = gen(foo, True)
# some more code after this
now this rasises an error:
AttributeError: 'tuple' object has no attribute 'ndims'
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-1-701a9276e633> in <module>()
94
95
---> 96 train()
<ipython-input-1-701a9276e633> in train()
41 # print(foo.shape)
42 print("==========================+==============")
---> 43 gen_image = gen(foo, True)
44 # gen_image = gen(next_gray, True)
45 print("==========================+==============")
~Desktopcodepythonimage_processingUntitled FolderUntitled Foldertesting1_2my_gen.py in gen(input, is_train)
30 conv1 = tf.layers.conv2d(input,c1,k_size,strides,'SAME',
31 kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
---> 32 name='conv1')
33
34 bn1 = tf.contrib.layers.batch_norm(conv1,is_training=is_train, updates_collections=None,
~Anaconda2envsimage_reclibsite-packagestensorflowpythonlayersconvolutional.py in conv2d(inputs, filters, kernel_size, strides, padding, data_format, dilation_rate, activation, use_bias, kernel_initializer, bias_initializer, kernel_regularizer, bias_regularizer, activity_regularizer, kernel_constraint, bias_constraint, trainable, name, reuse)
423 _reuse=reuse,
424 _scope=name)
--> 425 return layer.apply(inputs)
426
427
~Anaconda2envsimage_reclibsite-packagestensorflowpythonkerasenginebase_layer.py in apply(self, inputs, *args, **kwargs)
803 Output tensor(s).
804 """
--> 805 return self.__call__(inputs, *args, **kwargs)
806
807 def _set_learning_phase_metadata(self, inputs, outputs):
~Anaconda2envsimage_reclibsite-packagestensorflowpythonlayersbase.py in __call__(self, inputs, *args, **kwargs)
360
361 # Actually call layer
--> 362 outputs = super(Layer, self).__call__(inputs, *args, **kwargs)
363
364 if not context.executing_eagerly():
~Anaconda2envsimage_reclibsite-packagestensorflowpythonkerasenginebase_layer.py in __call__(self, inputs, *args, **kwargs)
718
719 # Check input assumptions set before layer building, e.g. input rank.
--> 720 self._assert_input_compatibility(inputs)
721 if input_list and self._dtype is None:
722 try:
~Anaconda2envsimage_reclibsite-packagestensorflowpythonkerasenginebase_layer.py in _assert_input_compatibility(self, inputs)
1408 spec.min_ndim is not None or
1409 spec.max_ndim is not None):
-> 1410 if x.shape.ndims is None:
1411 raise ValueError('Input ' + str(input_index) + ' of layer ' +
1412 self.name + ' is incompatible with the layer: '
AttributeError: 'tuple' object has no attribute 'ndims'
thanks in advance
python tensorflow tensorflow-datasets
python tensorflow tensorflow-datasets
edited Nov 25 '18 at 10:51
Adi Goldner
asked Nov 25 '18 at 9:57
Adi GoldnerAdi Goldner
63
63
Please include the error in the body of your question, it is OK to copy and paste the error in as text, just format it as a code block and it will render OK.
– SuperShoot
Nov 25 '18 at 10:19
What isgen
? That's where the error happens.
– Matthieu Brucher
Nov 25 '18 at 10:27
add a comment |
Please include the error in the body of your question, it is OK to copy and paste the error in as text, just format it as a code block and it will render OK.
– SuperShoot
Nov 25 '18 at 10:19
What isgen
? That's where the error happens.
– Matthieu Brucher
Nov 25 '18 at 10:27
Please include the error in the body of your question, it is OK to copy and paste the error in as text, just format it as a code block and it will render OK.
– SuperShoot
Nov 25 '18 at 10:19
Please include the error in the body of your question, it is OK to copy and paste the error in as text, just format it as a code block and it will render OK.
– SuperShoot
Nov 25 '18 at 10:19
What is
gen
? That's where the error happens.– Matthieu Brucher
Nov 25 '18 at 10:27
What is
gen
? That's where the error happens.– Matthieu Brucher
Nov 25 '18 at 10:27
add a comment |
1 Answer
1
active
oldest
votes
so apparently casting the out put to a tf.float32 solves the problem
next_color, next_gray = get_next()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
foo = sess.run(next_gray)
gray_batch = tf.cast(foo, dtype = tf.float32)
gen_image = gen(gray_batch, True)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53466396%2ftensorflow-dataset-api-input-for-training-tuple-object-has-no-ndims-attribute%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
so apparently casting the out put to a tf.float32 solves the problem
next_color, next_gray = get_next()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
foo = sess.run(next_gray)
gray_batch = tf.cast(foo, dtype = tf.float32)
gen_image = gen(gray_batch, True)
add a comment |
so apparently casting the out put to a tf.float32 solves the problem
next_color, next_gray = get_next()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
foo = sess.run(next_gray)
gray_batch = tf.cast(foo, dtype = tf.float32)
gen_image = gen(gray_batch, True)
add a comment |
so apparently casting the out put to a tf.float32 solves the problem
next_color, next_gray = get_next()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
foo = sess.run(next_gray)
gray_batch = tf.cast(foo, dtype = tf.float32)
gen_image = gen(gray_batch, True)
so apparently casting the out put to a tf.float32 solves the problem
next_color, next_gray = get_next()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
foo = sess.run(next_gray)
gray_batch = tf.cast(foo, dtype = tf.float32)
gen_image = gen(gray_batch, True)
answered Nov 28 '18 at 15:25
Adi GoldnerAdi Goldner
63
63
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53466396%2ftensorflow-dataset-api-input-for-training-tuple-object-has-no-ndims-attribute%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Please include the error in the body of your question, it is OK to copy and paste the error in as text, just format it as a code block and it will render OK.
– SuperShoot
Nov 25 '18 at 10:19
What is
gen
? That's where the error happens.– Matthieu Brucher
Nov 25 '18 at 10:27