Linear regression with dependent variables: express prediction with dot products
$begingroup$
When dealing with Linear regressin with dependent variables, one can consider the optimization problem:
$$arg min_w 0.5lVert{w}rVert^2 \ s.t. Xw=y$$
Where $Xinmathbb{R}^{n,d}$ is the data matrix and $yinmathbb{R}^{n}$ is the labels vector.
Using Lagrangian multipliers I was able to show that $w^*$ can be written as $w^*=X^Talpha$ for $alpha in mathbb{R}^n$.
Now given a new $xinmathbb{R}^d$, consider $x^Tw^*$. How can this be expressed using dot products between $xinmathbb{R}^d$? The goal is to show that the kernel trick is working for that setup of linear regression.
Thanks.
linear-regression
$endgroup$
add a comment |
$begingroup$
When dealing with Linear regressin with dependent variables, one can consider the optimization problem:
$$arg min_w 0.5lVert{w}rVert^2 \ s.t. Xw=y$$
Where $Xinmathbb{R}^{n,d}$ is the data matrix and $yinmathbb{R}^{n}$ is the labels vector.
Using Lagrangian multipliers I was able to show that $w^*$ can be written as $w^*=X^Talpha$ for $alpha in mathbb{R}^n$.
Now given a new $xinmathbb{R}^d$, consider $x^Tw^*$. How can this be expressed using dot products between $xinmathbb{R}^d$? The goal is to show that the kernel trick is working for that setup of linear regression.
Thanks.
linear-regression
$endgroup$
add a comment |
$begingroup$
When dealing with Linear regressin with dependent variables, one can consider the optimization problem:
$$arg min_w 0.5lVert{w}rVert^2 \ s.t. Xw=y$$
Where $Xinmathbb{R}^{n,d}$ is the data matrix and $yinmathbb{R}^{n}$ is the labels vector.
Using Lagrangian multipliers I was able to show that $w^*$ can be written as $w^*=X^Talpha$ for $alpha in mathbb{R}^n$.
Now given a new $xinmathbb{R}^d$, consider $x^Tw^*$. How can this be expressed using dot products between $xinmathbb{R}^d$? The goal is to show that the kernel trick is working for that setup of linear regression.
Thanks.
linear-regression
$endgroup$
When dealing with Linear regressin with dependent variables, one can consider the optimization problem:
$$arg min_w 0.5lVert{w}rVert^2 \ s.t. Xw=y$$
Where $Xinmathbb{R}^{n,d}$ is the data matrix and $yinmathbb{R}^{n}$ is the labels vector.
Using Lagrangian multipliers I was able to show that $w^*$ can be written as $w^*=X^Talpha$ for $alpha in mathbb{R}^n$.
Now given a new $xinmathbb{R}^d$, consider $x^Tw^*$. How can this be expressed using dot products between $xinmathbb{R}^d$? The goal is to show that the kernel trick is working for that setup of linear regression.
Thanks.
linear-regression
linear-regression
asked Jan 4 at 16:14
galah92galah92
25418
25418
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061793%2flinear-regression-with-dependent-variables-express-prediction-with-dot-products%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061793%2flinear-regression-with-dependent-variables-express-prediction-with-dot-products%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown