A closed form of $sum_{k=1}^infty psi^{(1)} (k+a)psi^{(1)} (k+b)$?











up vote
39
down vote

favorite
26












The following result
$$
sum_{k=1}^inftyleft(psi^{(1)} (k)right)^2 = 3zeta(3)
$$ where $psi^{(1)}$ is the polygamma function makes me think there is a nice sum for the series




$$
sum_{k=1}^infty left(psi^{(1)} (k+a)right)^2
$$




or




$$
sum_{k=1}^infty psi^{(1)} (k+a)psi^{(1)} (k+b)
$$




where $a$ and $b$ are any real numbers such that $a >-1, b>-1.$



Could you help me to find it?










share|cite|improve this question




















  • 2




    If one proceeds along the same lines as that result, it seems that all one needs is a general result for the integral $$int_0^1 ! !int_0^1 frac{u^a v^b ln uln v}{(1-uv)(1 - u)(1-v)}{rm{d}} u:{rm{d}} v.$$ (That, of course, presumes that this integral is tractable...)
    – Semiclassical
    Aug 3 '14 at 18:24








  • 3




    Maybe through the identity: $$sum_{k=1}^{+infty}psi'(k), x^k = frac{x}{6-6x}left(pi^2-6operatorname{Li}_2(x)right).$$
    – Jack D'Aurizio
    Aug 3 '14 at 22:42








  • 5




    Based on that Mathematica has suggested that, $$ S_n=sum_{k=1}^infty(psi^{(1)}(k+n))^2 = 3zeta(3)-kappa_{n+1} $$ with $kappa_n$ given by the recurrence $$ kappa_1=0\ kappa_2=zeta(2)^2\ kappa_3=zeta(2)^2+(zeta(2)-1)^2\ kappa_n=frac{13 + 2ng_5 + g_3^4 g_2^2 kappa_{n-3} - g_3^2 g_2^2 (22-16n+3n^2) kappa_{n-2} + g_3^2 g_2^2 (17-14n+3n^2) kappa_{n-1}}{g_3^2 g_2^4} $$ where $g_k=(n-k)$.
    – Benedict W. J. Irwin
    Jun 27 '17 at 15:29






  • 6




    This gives $$ S_2=3zeta(3)-2zeta(2)^2+2zeta(2)-1\ S_3=3zeta(3)-3zeta(2)^2+frac{9}{2}zeta(2)-frac{41}{16}\ S_4=3zeta(3)-4zeta(2)^2+frac{65}{9}zeta(2)-frac{2861}{648}\ S_5=3zeta(3)-5zeta(2)^2+frac{725}{72}zeta(2)-frac{133577}{20736}\ $$ which seem to check out numerically.
    – Benedict W. J. Irwin
    Jun 27 '17 at 15:29






  • 1




    It is not too difficult to show that $$S_n = 3 zeta(3) - nzeta(2)^2 +2(nH_{n-1,2} - H_{n-1})zeta(2) - sum_{k=1}^{n-1}H_{k,2}^2,$$ where $H_n$ is the $n$-th Harmonic number and $H_{n,2} = sum_i^n 1/i^2$
    – Alexander Vlasev
    Jan 28 at 22:13

















up vote
39
down vote

favorite
26












The following result
$$
sum_{k=1}^inftyleft(psi^{(1)} (k)right)^2 = 3zeta(3)
$$ where $psi^{(1)}$ is the polygamma function makes me think there is a nice sum for the series




$$
sum_{k=1}^infty left(psi^{(1)} (k+a)right)^2
$$




or




$$
sum_{k=1}^infty psi^{(1)} (k+a)psi^{(1)} (k+b)
$$




where $a$ and $b$ are any real numbers such that $a >-1, b>-1.$



Could you help me to find it?










share|cite|improve this question




















  • 2




    If one proceeds along the same lines as that result, it seems that all one needs is a general result for the integral $$int_0^1 ! !int_0^1 frac{u^a v^b ln uln v}{(1-uv)(1 - u)(1-v)}{rm{d}} u:{rm{d}} v.$$ (That, of course, presumes that this integral is tractable...)
    – Semiclassical
    Aug 3 '14 at 18:24








  • 3




    Maybe through the identity: $$sum_{k=1}^{+infty}psi'(k), x^k = frac{x}{6-6x}left(pi^2-6operatorname{Li}_2(x)right).$$
    – Jack D'Aurizio
    Aug 3 '14 at 22:42








  • 5




    Based on that Mathematica has suggested that, $$ S_n=sum_{k=1}^infty(psi^{(1)}(k+n))^2 = 3zeta(3)-kappa_{n+1} $$ with $kappa_n$ given by the recurrence $$ kappa_1=0\ kappa_2=zeta(2)^2\ kappa_3=zeta(2)^2+(zeta(2)-1)^2\ kappa_n=frac{13 + 2ng_5 + g_3^4 g_2^2 kappa_{n-3} - g_3^2 g_2^2 (22-16n+3n^2) kappa_{n-2} + g_3^2 g_2^2 (17-14n+3n^2) kappa_{n-1}}{g_3^2 g_2^4} $$ where $g_k=(n-k)$.
    – Benedict W. J. Irwin
    Jun 27 '17 at 15:29






  • 6




    This gives $$ S_2=3zeta(3)-2zeta(2)^2+2zeta(2)-1\ S_3=3zeta(3)-3zeta(2)^2+frac{9}{2}zeta(2)-frac{41}{16}\ S_4=3zeta(3)-4zeta(2)^2+frac{65}{9}zeta(2)-frac{2861}{648}\ S_5=3zeta(3)-5zeta(2)^2+frac{725}{72}zeta(2)-frac{133577}{20736}\ $$ which seem to check out numerically.
    – Benedict W. J. Irwin
    Jun 27 '17 at 15:29






  • 1




    It is not too difficult to show that $$S_n = 3 zeta(3) - nzeta(2)^2 +2(nH_{n-1,2} - H_{n-1})zeta(2) - sum_{k=1}^{n-1}H_{k,2}^2,$$ where $H_n$ is the $n$-th Harmonic number and $H_{n,2} = sum_i^n 1/i^2$
    – Alexander Vlasev
    Jan 28 at 22:13















up vote
39
down vote

favorite
26









up vote
39
down vote

favorite
26






26





The following result
$$
sum_{k=1}^inftyleft(psi^{(1)} (k)right)^2 = 3zeta(3)
$$ where $psi^{(1)}$ is the polygamma function makes me think there is a nice sum for the series




$$
sum_{k=1}^infty left(psi^{(1)} (k+a)right)^2
$$




or




$$
sum_{k=1}^infty psi^{(1)} (k+a)psi^{(1)} (k+b)
$$




where $a$ and $b$ are any real numbers such that $a >-1, b>-1.$



Could you help me to find it?










share|cite|improve this question















The following result
$$
sum_{k=1}^inftyleft(psi^{(1)} (k)right)^2 = 3zeta(3)
$$ where $psi^{(1)}$ is the polygamma function makes me think there is a nice sum for the series




$$
sum_{k=1}^infty left(psi^{(1)} (k+a)right)^2
$$




or




$$
sum_{k=1}^infty psi^{(1)} (k+a)psi^{(1)} (k+b)
$$




where $a$ and $b$ are any real numbers such that $a >-1, b>-1.$



Could you help me to find it?







calculus integration sequences-and-series closed-form polygamma






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 13 '17 at 12:20









Community

1




1










asked Aug 3 '14 at 17:51









Olivier Oloa

107k17175293




107k17175293








  • 2




    If one proceeds along the same lines as that result, it seems that all one needs is a general result for the integral $$int_0^1 ! !int_0^1 frac{u^a v^b ln uln v}{(1-uv)(1 - u)(1-v)}{rm{d}} u:{rm{d}} v.$$ (That, of course, presumes that this integral is tractable...)
    – Semiclassical
    Aug 3 '14 at 18:24








  • 3




    Maybe through the identity: $$sum_{k=1}^{+infty}psi'(k), x^k = frac{x}{6-6x}left(pi^2-6operatorname{Li}_2(x)right).$$
    – Jack D'Aurizio
    Aug 3 '14 at 22:42








  • 5




    Based on that Mathematica has suggested that, $$ S_n=sum_{k=1}^infty(psi^{(1)}(k+n))^2 = 3zeta(3)-kappa_{n+1} $$ with $kappa_n$ given by the recurrence $$ kappa_1=0\ kappa_2=zeta(2)^2\ kappa_3=zeta(2)^2+(zeta(2)-1)^2\ kappa_n=frac{13 + 2ng_5 + g_3^4 g_2^2 kappa_{n-3} - g_3^2 g_2^2 (22-16n+3n^2) kappa_{n-2} + g_3^2 g_2^2 (17-14n+3n^2) kappa_{n-1}}{g_3^2 g_2^4} $$ where $g_k=(n-k)$.
    – Benedict W. J. Irwin
    Jun 27 '17 at 15:29






  • 6




    This gives $$ S_2=3zeta(3)-2zeta(2)^2+2zeta(2)-1\ S_3=3zeta(3)-3zeta(2)^2+frac{9}{2}zeta(2)-frac{41}{16}\ S_4=3zeta(3)-4zeta(2)^2+frac{65}{9}zeta(2)-frac{2861}{648}\ S_5=3zeta(3)-5zeta(2)^2+frac{725}{72}zeta(2)-frac{133577}{20736}\ $$ which seem to check out numerically.
    – Benedict W. J. Irwin
    Jun 27 '17 at 15:29






  • 1




    It is not too difficult to show that $$S_n = 3 zeta(3) - nzeta(2)^2 +2(nH_{n-1,2} - H_{n-1})zeta(2) - sum_{k=1}^{n-1}H_{k,2}^2,$$ where $H_n$ is the $n$-th Harmonic number and $H_{n,2} = sum_i^n 1/i^2$
    – Alexander Vlasev
    Jan 28 at 22:13
















  • 2




    If one proceeds along the same lines as that result, it seems that all one needs is a general result for the integral $$int_0^1 ! !int_0^1 frac{u^a v^b ln uln v}{(1-uv)(1 - u)(1-v)}{rm{d}} u:{rm{d}} v.$$ (That, of course, presumes that this integral is tractable...)
    – Semiclassical
    Aug 3 '14 at 18:24








  • 3




    Maybe through the identity: $$sum_{k=1}^{+infty}psi'(k), x^k = frac{x}{6-6x}left(pi^2-6operatorname{Li}_2(x)right).$$
    – Jack D'Aurizio
    Aug 3 '14 at 22:42








  • 5




    Based on that Mathematica has suggested that, $$ S_n=sum_{k=1}^infty(psi^{(1)}(k+n))^2 = 3zeta(3)-kappa_{n+1} $$ with $kappa_n$ given by the recurrence $$ kappa_1=0\ kappa_2=zeta(2)^2\ kappa_3=zeta(2)^2+(zeta(2)-1)^2\ kappa_n=frac{13 + 2ng_5 + g_3^4 g_2^2 kappa_{n-3} - g_3^2 g_2^2 (22-16n+3n^2) kappa_{n-2} + g_3^2 g_2^2 (17-14n+3n^2) kappa_{n-1}}{g_3^2 g_2^4} $$ where $g_k=(n-k)$.
    – Benedict W. J. Irwin
    Jun 27 '17 at 15:29






  • 6




    This gives $$ S_2=3zeta(3)-2zeta(2)^2+2zeta(2)-1\ S_3=3zeta(3)-3zeta(2)^2+frac{9}{2}zeta(2)-frac{41}{16}\ S_4=3zeta(3)-4zeta(2)^2+frac{65}{9}zeta(2)-frac{2861}{648}\ S_5=3zeta(3)-5zeta(2)^2+frac{725}{72}zeta(2)-frac{133577}{20736}\ $$ which seem to check out numerically.
    – Benedict W. J. Irwin
    Jun 27 '17 at 15:29






  • 1




    It is not too difficult to show that $$S_n = 3 zeta(3) - nzeta(2)^2 +2(nH_{n-1,2} - H_{n-1})zeta(2) - sum_{k=1}^{n-1}H_{k,2}^2,$$ where $H_n$ is the $n$-th Harmonic number and $H_{n,2} = sum_i^n 1/i^2$
    – Alexander Vlasev
    Jan 28 at 22:13










2




2




If one proceeds along the same lines as that result, it seems that all one needs is a general result for the integral $$int_0^1 ! !int_0^1 frac{u^a v^b ln uln v}{(1-uv)(1 - u)(1-v)}{rm{d}} u:{rm{d}} v.$$ (That, of course, presumes that this integral is tractable...)
– Semiclassical
Aug 3 '14 at 18:24






If one proceeds along the same lines as that result, it seems that all one needs is a general result for the integral $$int_0^1 ! !int_0^1 frac{u^a v^b ln uln v}{(1-uv)(1 - u)(1-v)}{rm{d}} u:{rm{d}} v.$$ (That, of course, presumes that this integral is tractable...)
– Semiclassical
Aug 3 '14 at 18:24






3




3




Maybe through the identity: $$sum_{k=1}^{+infty}psi'(k), x^k = frac{x}{6-6x}left(pi^2-6operatorname{Li}_2(x)right).$$
– Jack D'Aurizio
Aug 3 '14 at 22:42






Maybe through the identity: $$sum_{k=1}^{+infty}psi'(k), x^k = frac{x}{6-6x}left(pi^2-6operatorname{Li}_2(x)right).$$
– Jack D'Aurizio
Aug 3 '14 at 22:42






5




5




Based on that Mathematica has suggested that, $$ S_n=sum_{k=1}^infty(psi^{(1)}(k+n))^2 = 3zeta(3)-kappa_{n+1} $$ with $kappa_n$ given by the recurrence $$ kappa_1=0\ kappa_2=zeta(2)^2\ kappa_3=zeta(2)^2+(zeta(2)-1)^2\ kappa_n=frac{13 + 2ng_5 + g_3^4 g_2^2 kappa_{n-3} - g_3^2 g_2^2 (22-16n+3n^2) kappa_{n-2} + g_3^2 g_2^2 (17-14n+3n^2) kappa_{n-1}}{g_3^2 g_2^4} $$ where $g_k=(n-k)$.
– Benedict W. J. Irwin
Jun 27 '17 at 15:29




Based on that Mathematica has suggested that, $$ S_n=sum_{k=1}^infty(psi^{(1)}(k+n))^2 = 3zeta(3)-kappa_{n+1} $$ with $kappa_n$ given by the recurrence $$ kappa_1=0\ kappa_2=zeta(2)^2\ kappa_3=zeta(2)^2+(zeta(2)-1)^2\ kappa_n=frac{13 + 2ng_5 + g_3^4 g_2^2 kappa_{n-3} - g_3^2 g_2^2 (22-16n+3n^2) kappa_{n-2} + g_3^2 g_2^2 (17-14n+3n^2) kappa_{n-1}}{g_3^2 g_2^4} $$ where $g_k=(n-k)$.
– Benedict W. J. Irwin
Jun 27 '17 at 15:29




6




6




This gives $$ S_2=3zeta(3)-2zeta(2)^2+2zeta(2)-1\ S_3=3zeta(3)-3zeta(2)^2+frac{9}{2}zeta(2)-frac{41}{16}\ S_4=3zeta(3)-4zeta(2)^2+frac{65}{9}zeta(2)-frac{2861}{648}\ S_5=3zeta(3)-5zeta(2)^2+frac{725}{72}zeta(2)-frac{133577}{20736}\ $$ which seem to check out numerically.
– Benedict W. J. Irwin
Jun 27 '17 at 15:29




This gives $$ S_2=3zeta(3)-2zeta(2)^2+2zeta(2)-1\ S_3=3zeta(3)-3zeta(2)^2+frac{9}{2}zeta(2)-frac{41}{16}\ S_4=3zeta(3)-4zeta(2)^2+frac{65}{9}zeta(2)-frac{2861}{648}\ S_5=3zeta(3)-5zeta(2)^2+frac{725}{72}zeta(2)-frac{133577}{20736}\ $$ which seem to check out numerically.
– Benedict W. J. Irwin
Jun 27 '17 at 15:29




1




1




It is not too difficult to show that $$S_n = 3 zeta(3) - nzeta(2)^2 +2(nH_{n-1,2} - H_{n-1})zeta(2) - sum_{k=1}^{n-1}H_{k,2}^2,$$ where $H_n$ is the $n$-th Harmonic number and $H_{n,2} = sum_i^n 1/i^2$
– Alexander Vlasev
Jan 28 at 22:13






It is not too difficult to show that $$S_n = 3 zeta(3) - nzeta(2)^2 +2(nH_{n-1,2} - H_{n-1})zeta(2) - sum_{k=1}^{n-1}H_{k,2}^2,$$ where $H_n$ is the $n$-th Harmonic number and $H_{n,2} = sum_i^n 1/i^2$
– Alexander Vlasev
Jan 28 at 22:13












1 Answer
1






active

oldest

votes

















up vote
3
down vote













We have
$$
int^{1}_{0}int^{1}_{0}frac{log ulog v}{(1-uv)(1-u)(1-v)}dudv=3zeta(3)
$$

Also
$$
int^{1}_{0}int^{1}_{0}frac{(uv)^klog ulog v}{(1-u)(1-v)}dudv=Z(2,k+1)psi'(k+1)textrm{, where }Re(k)>-1
$$

The function $Z(s,k)=sum^{infty}_{l=0}frac{1}{(l+k)^s}$ is Hurwitz zeta function.
Hence
$$
sum^{a-1}_{k=0}int^{1}_{0}int^{1}_{0}frac{(uv)^klog ulog v}{(1-u)(1-v)}dudv
=int^{1}_{0}int^{1}_{0}frac{(1-(uv)^a)log ulog v}{(1-uv)(1-u)(1-v)}dudv.
$$

Hence
$$
sum^{infty}_{k=1}left(psi'(k+a)right)^2=int^{1}_{0}int^{1}_{0}frac{(uv)^alog u log v}{(1-u v)(1-u)(1-v)}dudv=3zeta(3)-sum^{a-1}_{k=0}Z(2,k+1)psi'(k+1)
$$

By trying to generalize the problem we have
$$
C_{nu}=underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{log u_1ldots log u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots(1-u_{nu})}=sum^{infty}_{l=0}left(int^{1}_{0}frac{u^llog u}{1-u}duright)^{nu}=
$$

$$
=sum^{infty}_{l=0}left(-Z(2,l+1)right)^{nu}
$$

Also
$$
underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{u_1^kldots u_{nu}^k log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1)ldots (1-u_{nu})}=(-1)^{nu}Z(2,k+1)(psi'(k+1))^{nu-1}
$$

Hence
$$
sum^{a-1}_{k=0}underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{u_1^kldots u_{nu}^k log u_1ldotslog u_{nu}du_{1}ldots du_{nu}}{(1-u_1)ldots (1-u_{nu})}=(-1)^{nu}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}=
$$

$$
=underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{(1-u_1^aldots u_{nu}^a) log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots (1-u_{nu})}.
$$

Hence
$$
underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{(u_1^aldots u_{nu}^a) log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots (1-u_{nu})}=C_{nu}+(-1)^{nu-1}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}
$$

And finaly
$$
sum^{infty}_{k=1}left(psi'(k+a)right)^{nu}=C_{nu}+(-1)^{nu-1}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}
$$






share|cite|improve this answer























  • Thank you very much for your contribution! (+1) I think an interesting case would be a formula for $sum^{infty}_{k=1}left(psi'(k+a)right)^{2} $ where $a$ could be any positive real number.
    – Olivier Oloa
    Nov 25 at 8:36













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f886486%2fa-closed-form-of-sum-k-1-infty-psi1-ka-psi1-kb%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
3
down vote













We have
$$
int^{1}_{0}int^{1}_{0}frac{log ulog v}{(1-uv)(1-u)(1-v)}dudv=3zeta(3)
$$

Also
$$
int^{1}_{0}int^{1}_{0}frac{(uv)^klog ulog v}{(1-u)(1-v)}dudv=Z(2,k+1)psi'(k+1)textrm{, where }Re(k)>-1
$$

The function $Z(s,k)=sum^{infty}_{l=0}frac{1}{(l+k)^s}$ is Hurwitz zeta function.
Hence
$$
sum^{a-1}_{k=0}int^{1}_{0}int^{1}_{0}frac{(uv)^klog ulog v}{(1-u)(1-v)}dudv
=int^{1}_{0}int^{1}_{0}frac{(1-(uv)^a)log ulog v}{(1-uv)(1-u)(1-v)}dudv.
$$

Hence
$$
sum^{infty}_{k=1}left(psi'(k+a)right)^2=int^{1}_{0}int^{1}_{0}frac{(uv)^alog u log v}{(1-u v)(1-u)(1-v)}dudv=3zeta(3)-sum^{a-1}_{k=0}Z(2,k+1)psi'(k+1)
$$

By trying to generalize the problem we have
$$
C_{nu}=underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{log u_1ldots log u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots(1-u_{nu})}=sum^{infty}_{l=0}left(int^{1}_{0}frac{u^llog u}{1-u}duright)^{nu}=
$$

$$
=sum^{infty}_{l=0}left(-Z(2,l+1)right)^{nu}
$$

Also
$$
underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{u_1^kldots u_{nu}^k log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1)ldots (1-u_{nu})}=(-1)^{nu}Z(2,k+1)(psi'(k+1))^{nu-1}
$$

Hence
$$
sum^{a-1}_{k=0}underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{u_1^kldots u_{nu}^k log u_1ldotslog u_{nu}du_{1}ldots du_{nu}}{(1-u_1)ldots (1-u_{nu})}=(-1)^{nu}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}=
$$

$$
=underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{(1-u_1^aldots u_{nu}^a) log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots (1-u_{nu})}.
$$

Hence
$$
underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{(u_1^aldots u_{nu}^a) log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots (1-u_{nu})}=C_{nu}+(-1)^{nu-1}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}
$$

And finaly
$$
sum^{infty}_{k=1}left(psi'(k+a)right)^{nu}=C_{nu}+(-1)^{nu-1}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}
$$






share|cite|improve this answer























  • Thank you very much for your contribution! (+1) I think an interesting case would be a formula for $sum^{infty}_{k=1}left(psi'(k+a)right)^{2} $ where $a$ could be any positive real number.
    – Olivier Oloa
    Nov 25 at 8:36

















up vote
3
down vote













We have
$$
int^{1}_{0}int^{1}_{0}frac{log ulog v}{(1-uv)(1-u)(1-v)}dudv=3zeta(3)
$$

Also
$$
int^{1}_{0}int^{1}_{0}frac{(uv)^klog ulog v}{(1-u)(1-v)}dudv=Z(2,k+1)psi'(k+1)textrm{, where }Re(k)>-1
$$

The function $Z(s,k)=sum^{infty}_{l=0}frac{1}{(l+k)^s}$ is Hurwitz zeta function.
Hence
$$
sum^{a-1}_{k=0}int^{1}_{0}int^{1}_{0}frac{(uv)^klog ulog v}{(1-u)(1-v)}dudv
=int^{1}_{0}int^{1}_{0}frac{(1-(uv)^a)log ulog v}{(1-uv)(1-u)(1-v)}dudv.
$$

Hence
$$
sum^{infty}_{k=1}left(psi'(k+a)right)^2=int^{1}_{0}int^{1}_{0}frac{(uv)^alog u log v}{(1-u v)(1-u)(1-v)}dudv=3zeta(3)-sum^{a-1}_{k=0}Z(2,k+1)psi'(k+1)
$$

By trying to generalize the problem we have
$$
C_{nu}=underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{log u_1ldots log u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots(1-u_{nu})}=sum^{infty}_{l=0}left(int^{1}_{0}frac{u^llog u}{1-u}duright)^{nu}=
$$

$$
=sum^{infty}_{l=0}left(-Z(2,l+1)right)^{nu}
$$

Also
$$
underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{u_1^kldots u_{nu}^k log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1)ldots (1-u_{nu})}=(-1)^{nu}Z(2,k+1)(psi'(k+1))^{nu-1}
$$

Hence
$$
sum^{a-1}_{k=0}underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{u_1^kldots u_{nu}^k log u_1ldotslog u_{nu}du_{1}ldots du_{nu}}{(1-u_1)ldots (1-u_{nu})}=(-1)^{nu}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}=
$$

$$
=underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{(1-u_1^aldots u_{nu}^a) log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots (1-u_{nu})}.
$$

Hence
$$
underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{(u_1^aldots u_{nu}^a) log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots (1-u_{nu})}=C_{nu}+(-1)^{nu-1}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}
$$

And finaly
$$
sum^{infty}_{k=1}left(psi'(k+a)right)^{nu}=C_{nu}+(-1)^{nu-1}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}
$$






share|cite|improve this answer























  • Thank you very much for your contribution! (+1) I think an interesting case would be a formula for $sum^{infty}_{k=1}left(psi'(k+a)right)^{2} $ where $a$ could be any positive real number.
    – Olivier Oloa
    Nov 25 at 8:36















up vote
3
down vote










up vote
3
down vote









We have
$$
int^{1}_{0}int^{1}_{0}frac{log ulog v}{(1-uv)(1-u)(1-v)}dudv=3zeta(3)
$$

Also
$$
int^{1}_{0}int^{1}_{0}frac{(uv)^klog ulog v}{(1-u)(1-v)}dudv=Z(2,k+1)psi'(k+1)textrm{, where }Re(k)>-1
$$

The function $Z(s,k)=sum^{infty}_{l=0}frac{1}{(l+k)^s}$ is Hurwitz zeta function.
Hence
$$
sum^{a-1}_{k=0}int^{1}_{0}int^{1}_{0}frac{(uv)^klog ulog v}{(1-u)(1-v)}dudv
=int^{1}_{0}int^{1}_{0}frac{(1-(uv)^a)log ulog v}{(1-uv)(1-u)(1-v)}dudv.
$$

Hence
$$
sum^{infty}_{k=1}left(psi'(k+a)right)^2=int^{1}_{0}int^{1}_{0}frac{(uv)^alog u log v}{(1-u v)(1-u)(1-v)}dudv=3zeta(3)-sum^{a-1}_{k=0}Z(2,k+1)psi'(k+1)
$$

By trying to generalize the problem we have
$$
C_{nu}=underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{log u_1ldots log u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots(1-u_{nu})}=sum^{infty}_{l=0}left(int^{1}_{0}frac{u^llog u}{1-u}duright)^{nu}=
$$

$$
=sum^{infty}_{l=0}left(-Z(2,l+1)right)^{nu}
$$

Also
$$
underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{u_1^kldots u_{nu}^k log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1)ldots (1-u_{nu})}=(-1)^{nu}Z(2,k+1)(psi'(k+1))^{nu-1}
$$

Hence
$$
sum^{a-1}_{k=0}underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{u_1^kldots u_{nu}^k log u_1ldotslog u_{nu}du_{1}ldots du_{nu}}{(1-u_1)ldots (1-u_{nu})}=(-1)^{nu}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}=
$$

$$
=underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{(1-u_1^aldots u_{nu}^a) log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots (1-u_{nu})}.
$$

Hence
$$
underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{(u_1^aldots u_{nu}^a) log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots (1-u_{nu})}=C_{nu}+(-1)^{nu-1}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}
$$

And finaly
$$
sum^{infty}_{k=1}left(psi'(k+a)right)^{nu}=C_{nu}+(-1)^{nu-1}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}
$$






share|cite|improve this answer














We have
$$
int^{1}_{0}int^{1}_{0}frac{log ulog v}{(1-uv)(1-u)(1-v)}dudv=3zeta(3)
$$

Also
$$
int^{1}_{0}int^{1}_{0}frac{(uv)^klog ulog v}{(1-u)(1-v)}dudv=Z(2,k+1)psi'(k+1)textrm{, where }Re(k)>-1
$$

The function $Z(s,k)=sum^{infty}_{l=0}frac{1}{(l+k)^s}$ is Hurwitz zeta function.
Hence
$$
sum^{a-1}_{k=0}int^{1}_{0}int^{1}_{0}frac{(uv)^klog ulog v}{(1-u)(1-v)}dudv
=int^{1}_{0}int^{1}_{0}frac{(1-(uv)^a)log ulog v}{(1-uv)(1-u)(1-v)}dudv.
$$

Hence
$$
sum^{infty}_{k=1}left(psi'(k+a)right)^2=int^{1}_{0}int^{1}_{0}frac{(uv)^alog u log v}{(1-u v)(1-u)(1-v)}dudv=3zeta(3)-sum^{a-1}_{k=0}Z(2,k+1)psi'(k+1)
$$

By trying to generalize the problem we have
$$
C_{nu}=underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{log u_1ldots log u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots(1-u_{nu})}=sum^{infty}_{l=0}left(int^{1}_{0}frac{u^llog u}{1-u}duright)^{nu}=
$$

$$
=sum^{infty}_{l=0}left(-Z(2,l+1)right)^{nu}
$$

Also
$$
underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{u_1^kldots u_{nu}^k log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1)ldots (1-u_{nu})}=(-1)^{nu}Z(2,k+1)(psi'(k+1))^{nu-1}
$$

Hence
$$
sum^{a-1}_{k=0}underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{u_1^kldots u_{nu}^k log u_1ldotslog u_{nu}du_{1}ldots du_{nu}}{(1-u_1)ldots (1-u_{nu})}=(-1)^{nu}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}=
$$

$$
=underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{(1-u_1^aldots u_{nu}^a) log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots (1-u_{nu})}.
$$

Hence
$$
underbrace{int^{1}_{0}ldotsint^{1}_{0}}_{nu}frac{(u_1^aldots u_{nu}^a) log u_1ldotslog u_{nu}du_1ldots du_{nu}}{(1-u_1ldots u_{nu})(1-u_1)ldots (1-u_{nu})}=C_{nu}+(-1)^{nu-1}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}
$$

And finaly
$$
sum^{infty}_{k=1}left(psi'(k+a)right)^{nu}=C_{nu}+(-1)^{nu-1}sum^{a-1}_{k=0}Z(2,k+1)(psi'(k+1))^{nu-1}
$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Nov 25 at 7:19

























answered Nov 24 at 23:36









Nikos Bagis

2,157312




2,157312












  • Thank you very much for your contribution! (+1) I think an interesting case would be a formula for $sum^{infty}_{k=1}left(psi'(k+a)right)^{2} $ where $a$ could be any positive real number.
    – Olivier Oloa
    Nov 25 at 8:36




















  • Thank you very much for your contribution! (+1) I think an interesting case would be a formula for $sum^{infty}_{k=1}left(psi'(k+a)right)^{2} $ where $a$ could be any positive real number.
    – Olivier Oloa
    Nov 25 at 8:36


















Thank you very much for your contribution! (+1) I think an interesting case would be a formula for $sum^{infty}_{k=1}left(psi'(k+a)right)^{2} $ where $a$ could be any positive real number.
– Olivier Oloa
Nov 25 at 8:36






Thank you very much for your contribution! (+1) I think an interesting case would be a formula for $sum^{infty}_{k=1}left(psi'(k+a)right)^{2} $ where $a$ could be any positive real number.
– Olivier Oloa
Nov 25 at 8:36




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f886486%2fa-closed-form-of-sum-k-1-infty-psi1-ka-psi1-kb%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen