Genetic algorithm spits out strange result in Dart/Flutter












0















In my app i use a genetic algorithm to get a good result to a certain problem. The algorithm itself is synchronous, but the function calling it is asynchronous to keep the UI from freezing.



In my algorithm, the variable bestSolution keeps the best solution the algorithm has produced so far. It gets changed whenever the algorithm finds a solution that is better than the current bestSolution. When it's changed i also print the new bestSolution into the log.



After the algorithm is finished(currently finishes after 500 generations), bestSolution is passed to the function that called the genetic algorithm to update the UI. But the bestSolution at the end is completely different to any value it has been before. I tried it multiple times, and the end result was never logged in the console, and also was a very bad result for what the algorithm is trying to achieve.



I'll put the algorithm aswell as some log output here, the function calling it just calls the solve() function of my GeneticAlgorithmSolver. Any help is very much appreciated.



The algorithm:



import 'dart:math';

import 'package:flutter/material.dart';
import 'package:meal_tracker/model/meal.dart';

class GeneticAlgorithmSolver {
Random random = Random();

List<Meal> breakfasts;
List<Meal> lunches;
List<Meal> dinners;

double proteinGoal;
double carbGoal;
double fatGoal;

int generationCount;
int populationCount;
double mutationChance;

List currentGen;

GeneticAlgorithmSolver(
{this.breakfasts,
this.lunches,
this.dinners,
this.proteinGoal,
this.carbGoal,
this.fatGoal,
this.generationCount,
this.populationCount,
this.mutationChance})
: assert(breakfasts.length > 0),
assert(lunches.length > 0),
assert(dinners.length > 0);

List bestSolution;
double bestSolutionFitness = 0.0;

//This function generates the first generation, and then calls nextGen() as often as generationCount.
//At the end it returns bestSolution, which is changed throughout the algorithm within the nextGen() function.
List solve() {
currentGen = generateFirstGen(
breakfasts: breakfasts, lunches: lunches, dinners: dinners);
print("population size: " + currentGen.length.toString());
for (int i = 0; i < generationCount; i++) {
print("Starting generation: " + i.toString());
currentGen = nextGen(currentGen);
if (generationCount - i == 1) {
print(bestSolution[0].toJson());
}
}
print(bestSolutionFitness);
print(bestSolution[0].toJson());
return bestSolution;
}

//This function returns as many random solutions as populationCount, therefore generating the first generation.
//I'm pretty sure that the bug is not in here.
List<List<Meal>> generateFirstGen(
{@required List breakfasts,
@required List lunches,
@required List dinners}) {
List<List<Meal>> gen = ;

for (int i = 0; i < populationCount; i++) {
List<Meal> list = [
breakfasts[(random.nextDouble() * (breakfasts.length - 1)).round()],
lunches[(random.nextDouble() * (lunches.length - 1)).round()],
dinners[(random.nextDouble() * (dinners.length - 1)).round()]
];
for (int y = 0; y < list.length; y++) {
for (int z = 0; z < list[y].foods.length; z++) {
list[y].setFactor(z, random.nextDouble());
}
}
gen.add(list);
}
return gen;
}

double calculateFitness(num current, num max) {
double fitness = (current / max).clamp(0, 2);
if (fitness > 1) {
return 2 - fitness;
}
assert(fitness > 0 && fitness <= 1);
return fitness;
}

//This function takes the current generation and sorts the results based on their fitness(how good they are)
//Then it merges results and returns a new generation.
List<List<Meal>> nextGen(List<List<Meal>> currentGen) {
List<List<Meal>> nextGen = ;

List<Map<String, dynamic>> fitnessMap = ;

currentGen.forEach((f) {
double protein = 0.0;
double fat = 0.0;
double carb = 0.0;

for (int i = 0; i < f.length; i++) {
protein += f[i].calculateProtein();
fat += f[i].calculateFat();
carb += f[i].calculateCarbs();
}

fitnessMap.add({
"day": f,
"fitness": (calculateFitness(protein, proteinGoal) +
calculateFitness(fat, fatGoal) +
calculateFitness(carb, carbGoal)) /
3
});
});

List sortedGen = ;

//Simple Bubblesort to sort the results based on their fitness.
bool sorted = false;

for (int i = 0; i < fitnessMap.length && !sorted; i++) {
sorted = true;
for (int y = 0; y < fitnessMap.length - i - 1; y++) {
if (fitnessMap[y]["fitness"] > fitnessMap[y + 1]["fitness"]) {
sorted = false;
Map temp = fitnessMap[y];
fitnessMap[y] = fitnessMap[y + 1];
fitnessMap[y + 1] = temp;
}
}
}

print(List.generate(fitnessMap.length, (i) => fitnessMap[i]["fitness"]));

//Since fitnessMap is sorted, the last item should be the best(the one with the highest fitness)
Map bestResult = fitnessMap[fitnessMap.length - 1];

//If then the current best result is better than the overall best result, the current best becomes the new overall best.
if (bestResult["fitness"] > bestSolutionFitness) {
print("=======NEW BEST======= : " + bestResult["fitness"].toString());
print(List.generate(
bestResult["day"].length, (i) => bestResult["day"][i].toJson()));

double protein = 0.0;
double fat = 0.0;
double carb = 0.0;

for (int i = 0; i < bestResult["day"].length; i++) {
protein += bestResult["day"][i].calculateProtein();
fat += bestResult["day"][i].calculateFat();
carb += bestResult["day"][i].calculateCarbs();
}

var calcut = (calculateFitness(protein, proteinGoal) +
calculateFitness(fat, fatGoal) +
calculateFitness(carb, carbGoal)) /
3;

print("=======Calculat======= : " + calcut.toString());
bestSolution = bestResult["day"];
print(bestSolution[0].toJson());
print(bestResult["day"][0].toJson());
bestSolutionFitness = bestResult["fitness"];
}

sortedGen = List.generate(fitnessMap.length, (i) => fitnessMap[i]["day"]);

//Here is the merging process, it's very messy and the bug is not here for sure.
for (int i = 0; i < populationCount; i++) {
List child;
List firstParent = sortedGen[min(
(sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
sortedGen.length - 1)];
child = firstParent;
int firstIndex = random.nextInt(child.length);
int secondIndex = random.nextInt(child.length);
List secondParent = sortedGen[min(
(sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
sortedGen.length - 1)];
for (int i = min(firstIndex, secondIndex);
i < max(firstIndex, secondIndex);
i++) {
child[i] = secondParent[i];
}

for (int i = 0; i < child.length; i++) {
if (random.nextDouble() <= mutationChance) {
switch (i) {
case 0:
child[i] = breakfasts[
(random.nextDouble() * (breakfasts.length - 1)).round()];
break;
case 1:
child[i] =
lunches[(random.nextDouble() * (lunches.length - 1)).round()];
break;
case 2:
child[i] =
dinners[(random.nextDouble() * (dinners.length - 1)).round()];
break;
}
}
}

for (int i = 0; i < child.length; i++) {
for (int y = 0; y < child[i].getItemCount; y++) {
if (random.nextDouble() <= mutationChance) {
child[i].setFactor(y, random.nextDouble());
}
}
}

nextGen.add(child);
}

return nextGen;
}
}


Here is a sample log output, i decreased the number of generations to 20 so StackOverflow doesn't complain about spam:



I/flutter (21224): Starting generation: 0
I/flutter (21224): [0.5313978709043187, 0.5313978709043187, 0.5313978709043187, 0.5313978709043187, 0.5313978709043187, 0.7299423655395717, 0.7299423655395717, 0.7299423655395717, 0.7374132001763957, 0.8297048120160494]
I/flutter (21224): =======NEW BEST======= : 0.8297048120160494
I/flutter (21224): [{name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.819958805652279}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.2969825022643108}]}, {name: Reis mit Hänchen, ingredients: [{food: {name: Naturreis, fat: 2.2, saturatedFat: 0.6, carb: 74.0, sugar: 0.7, fiber: 2.2, protein: 7.8, sodium: 0.01, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: vegetables, barcode: 4019339212189}, amount: 100.0, scalability: 75.0, factor: 0.69
I/flutter (21224): =======Calculat======= : 0.8297048120160494
I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.819958805652279}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.2969825022643108}]}
I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.819958805652279}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.2969825022643108}]}
I/flutter (21224): Starting generation: 1
I/flutter (21224): [0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.7075198382526259, 0.7075198382526259, 0.7075198382526259]
I/flutter (21224): Starting generation: 2
I/flutter (21224): [0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.737783580588736, 0.737783580588736, 0.737783580588736, 0.737783580588736]
I/flutter (21224): Starting generation: 3
I/flutter (21224): [0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959]
I/flutter (21224): Starting generation: 4
I/flutter (21224): [0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459]
I/flutter (21224): Starting generation: 5
I/flutter (21224): [0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794]
I/flutter (21224): Starting generation: 6
I/flutter (21224): [0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283]
I/flutter (21224): Starting generation: 7
I/flutter (21224): [0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635]
I/flutter (21224): Starting generation: 8
I/flutter (21224): [0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798]
I/flutter (21224): Starting generation: 9
I/flutter (21224): [0.4807063467379004, 0.4807063467379004, 0.4807063467379004, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805]
I/flutter (21224): Starting generation: 10
I/flutter (21224): [0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169]
I/flutter (21224): Starting generation: 11
I/flutter (21224): [0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387]
I/flutter (21224): Starting generation: 12
I/flutter (21224): [0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777]
I/flutter (21224): Starting generation: 13
I/flutter (21224): [0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626]
I/flutter (21224): Starting generation: 14
I/flutter (21224): [0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503]
I/flutter (21224): Starting generation: 15
I/flutter (21224): [0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633]
I/flutter (21224): Starting generation: 16
I/flutter (21224): [0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226]
I/flutter (21224): Starting generation: 17
I/flutter (21224): [0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354]
I/flutter (21224): Starting generation: 18
I/flutter (21224): [0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095]
I/flutter (21224): Starting generation: 19
I/flutter (21224): [0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662]
I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.3877294684577154}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.7549218291162099}]}
I/flutter (21224): 0.8297048120160494
I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.3877294684577154}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.7549218291162099}]}
I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.3877294684577154}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.7549218291162099}]}


As you can see every time the algorithm prints =======NEW BEST======= : //new best score, followed by the JSON of the new best solution. The JSON text at the end is what the function solve() returns. As you can see the ending JSON Text is unlike any previously printed JSON.



Thanks in advance for anyone even reading this and trying to help me!










share|improve this question



























    0















    In my app i use a genetic algorithm to get a good result to a certain problem. The algorithm itself is synchronous, but the function calling it is asynchronous to keep the UI from freezing.



    In my algorithm, the variable bestSolution keeps the best solution the algorithm has produced so far. It gets changed whenever the algorithm finds a solution that is better than the current bestSolution. When it's changed i also print the new bestSolution into the log.



    After the algorithm is finished(currently finishes after 500 generations), bestSolution is passed to the function that called the genetic algorithm to update the UI. But the bestSolution at the end is completely different to any value it has been before. I tried it multiple times, and the end result was never logged in the console, and also was a very bad result for what the algorithm is trying to achieve.



    I'll put the algorithm aswell as some log output here, the function calling it just calls the solve() function of my GeneticAlgorithmSolver. Any help is very much appreciated.



    The algorithm:



    import 'dart:math';

    import 'package:flutter/material.dart';
    import 'package:meal_tracker/model/meal.dart';

    class GeneticAlgorithmSolver {
    Random random = Random();

    List<Meal> breakfasts;
    List<Meal> lunches;
    List<Meal> dinners;

    double proteinGoal;
    double carbGoal;
    double fatGoal;

    int generationCount;
    int populationCount;
    double mutationChance;

    List currentGen;

    GeneticAlgorithmSolver(
    {this.breakfasts,
    this.lunches,
    this.dinners,
    this.proteinGoal,
    this.carbGoal,
    this.fatGoal,
    this.generationCount,
    this.populationCount,
    this.mutationChance})
    : assert(breakfasts.length > 0),
    assert(lunches.length > 0),
    assert(dinners.length > 0);

    List bestSolution;
    double bestSolutionFitness = 0.0;

    //This function generates the first generation, and then calls nextGen() as often as generationCount.
    //At the end it returns bestSolution, which is changed throughout the algorithm within the nextGen() function.
    List solve() {
    currentGen = generateFirstGen(
    breakfasts: breakfasts, lunches: lunches, dinners: dinners);
    print("population size: " + currentGen.length.toString());
    for (int i = 0; i < generationCount; i++) {
    print("Starting generation: " + i.toString());
    currentGen = nextGen(currentGen);
    if (generationCount - i == 1) {
    print(bestSolution[0].toJson());
    }
    }
    print(bestSolutionFitness);
    print(bestSolution[0].toJson());
    return bestSolution;
    }

    //This function returns as many random solutions as populationCount, therefore generating the first generation.
    //I'm pretty sure that the bug is not in here.
    List<List<Meal>> generateFirstGen(
    {@required List breakfasts,
    @required List lunches,
    @required List dinners}) {
    List<List<Meal>> gen = ;

    for (int i = 0; i < populationCount; i++) {
    List<Meal> list = [
    breakfasts[(random.nextDouble() * (breakfasts.length - 1)).round()],
    lunches[(random.nextDouble() * (lunches.length - 1)).round()],
    dinners[(random.nextDouble() * (dinners.length - 1)).round()]
    ];
    for (int y = 0; y < list.length; y++) {
    for (int z = 0; z < list[y].foods.length; z++) {
    list[y].setFactor(z, random.nextDouble());
    }
    }
    gen.add(list);
    }
    return gen;
    }

    double calculateFitness(num current, num max) {
    double fitness = (current / max).clamp(0, 2);
    if (fitness > 1) {
    return 2 - fitness;
    }
    assert(fitness > 0 && fitness <= 1);
    return fitness;
    }

    //This function takes the current generation and sorts the results based on their fitness(how good they are)
    //Then it merges results and returns a new generation.
    List<List<Meal>> nextGen(List<List<Meal>> currentGen) {
    List<List<Meal>> nextGen = ;

    List<Map<String, dynamic>> fitnessMap = ;

    currentGen.forEach((f) {
    double protein = 0.0;
    double fat = 0.0;
    double carb = 0.0;

    for (int i = 0; i < f.length; i++) {
    protein += f[i].calculateProtein();
    fat += f[i].calculateFat();
    carb += f[i].calculateCarbs();
    }

    fitnessMap.add({
    "day": f,
    "fitness": (calculateFitness(protein, proteinGoal) +
    calculateFitness(fat, fatGoal) +
    calculateFitness(carb, carbGoal)) /
    3
    });
    });

    List sortedGen = ;

    //Simple Bubblesort to sort the results based on their fitness.
    bool sorted = false;

    for (int i = 0; i < fitnessMap.length && !sorted; i++) {
    sorted = true;
    for (int y = 0; y < fitnessMap.length - i - 1; y++) {
    if (fitnessMap[y]["fitness"] > fitnessMap[y + 1]["fitness"]) {
    sorted = false;
    Map temp = fitnessMap[y];
    fitnessMap[y] = fitnessMap[y + 1];
    fitnessMap[y + 1] = temp;
    }
    }
    }

    print(List.generate(fitnessMap.length, (i) => fitnessMap[i]["fitness"]));

    //Since fitnessMap is sorted, the last item should be the best(the one with the highest fitness)
    Map bestResult = fitnessMap[fitnessMap.length - 1];

    //If then the current best result is better than the overall best result, the current best becomes the new overall best.
    if (bestResult["fitness"] > bestSolutionFitness) {
    print("=======NEW BEST======= : " + bestResult["fitness"].toString());
    print(List.generate(
    bestResult["day"].length, (i) => bestResult["day"][i].toJson()));

    double protein = 0.0;
    double fat = 0.0;
    double carb = 0.0;

    for (int i = 0; i < bestResult["day"].length; i++) {
    protein += bestResult["day"][i].calculateProtein();
    fat += bestResult["day"][i].calculateFat();
    carb += bestResult["day"][i].calculateCarbs();
    }

    var calcut = (calculateFitness(protein, proteinGoal) +
    calculateFitness(fat, fatGoal) +
    calculateFitness(carb, carbGoal)) /
    3;

    print("=======Calculat======= : " + calcut.toString());
    bestSolution = bestResult["day"];
    print(bestSolution[0].toJson());
    print(bestResult["day"][0].toJson());
    bestSolutionFitness = bestResult["fitness"];
    }

    sortedGen = List.generate(fitnessMap.length, (i) => fitnessMap[i]["day"]);

    //Here is the merging process, it's very messy and the bug is not here for sure.
    for (int i = 0; i < populationCount; i++) {
    List child;
    List firstParent = sortedGen[min(
    (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
    sortedGen.length - 1)];
    child = firstParent;
    int firstIndex = random.nextInt(child.length);
    int secondIndex = random.nextInt(child.length);
    List secondParent = sortedGen[min(
    (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
    sortedGen.length - 1)];
    for (int i = min(firstIndex, secondIndex);
    i < max(firstIndex, secondIndex);
    i++) {
    child[i] = secondParent[i];
    }

    for (int i = 0; i < child.length; i++) {
    if (random.nextDouble() <= mutationChance) {
    switch (i) {
    case 0:
    child[i] = breakfasts[
    (random.nextDouble() * (breakfasts.length - 1)).round()];
    break;
    case 1:
    child[i] =
    lunches[(random.nextDouble() * (lunches.length - 1)).round()];
    break;
    case 2:
    child[i] =
    dinners[(random.nextDouble() * (dinners.length - 1)).round()];
    break;
    }
    }
    }

    for (int i = 0; i < child.length; i++) {
    for (int y = 0; y < child[i].getItemCount; y++) {
    if (random.nextDouble() <= mutationChance) {
    child[i].setFactor(y, random.nextDouble());
    }
    }
    }

    nextGen.add(child);
    }

    return nextGen;
    }
    }


    Here is a sample log output, i decreased the number of generations to 20 so StackOverflow doesn't complain about spam:



    I/flutter (21224): Starting generation: 0
    I/flutter (21224): [0.5313978709043187, 0.5313978709043187, 0.5313978709043187, 0.5313978709043187, 0.5313978709043187, 0.7299423655395717, 0.7299423655395717, 0.7299423655395717, 0.7374132001763957, 0.8297048120160494]
    I/flutter (21224): =======NEW BEST======= : 0.8297048120160494
    I/flutter (21224): [{name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.819958805652279}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.2969825022643108}]}, {name: Reis mit Hänchen, ingredients: [{food: {name: Naturreis, fat: 2.2, saturatedFat: 0.6, carb: 74.0, sugar: 0.7, fiber: 2.2, protein: 7.8, sodium: 0.01, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: vegetables, barcode: 4019339212189}, amount: 100.0, scalability: 75.0, factor: 0.69
    I/flutter (21224): =======Calculat======= : 0.8297048120160494
    I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.819958805652279}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.2969825022643108}]}
    I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.819958805652279}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.2969825022643108}]}
    I/flutter (21224): Starting generation: 1
    I/flutter (21224): [0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.7075198382526259, 0.7075198382526259, 0.7075198382526259]
    I/flutter (21224): Starting generation: 2
    I/flutter (21224): [0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.737783580588736, 0.737783580588736, 0.737783580588736, 0.737783580588736]
    I/flutter (21224): Starting generation: 3
    I/flutter (21224): [0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959]
    I/flutter (21224): Starting generation: 4
    I/flutter (21224): [0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459]
    I/flutter (21224): Starting generation: 5
    I/flutter (21224): [0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794]
    I/flutter (21224): Starting generation: 6
    I/flutter (21224): [0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283]
    I/flutter (21224): Starting generation: 7
    I/flutter (21224): [0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635]
    I/flutter (21224): Starting generation: 8
    I/flutter (21224): [0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798]
    I/flutter (21224): Starting generation: 9
    I/flutter (21224): [0.4807063467379004, 0.4807063467379004, 0.4807063467379004, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805]
    I/flutter (21224): Starting generation: 10
    I/flutter (21224): [0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169]
    I/flutter (21224): Starting generation: 11
    I/flutter (21224): [0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387]
    I/flutter (21224): Starting generation: 12
    I/flutter (21224): [0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777]
    I/flutter (21224): Starting generation: 13
    I/flutter (21224): [0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626]
    I/flutter (21224): Starting generation: 14
    I/flutter (21224): [0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503]
    I/flutter (21224): Starting generation: 15
    I/flutter (21224): [0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633]
    I/flutter (21224): Starting generation: 16
    I/flutter (21224): [0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226]
    I/flutter (21224): Starting generation: 17
    I/flutter (21224): [0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354]
    I/flutter (21224): Starting generation: 18
    I/flutter (21224): [0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095]
    I/flutter (21224): Starting generation: 19
    I/flutter (21224): [0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662]
    I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.3877294684577154}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.7549218291162099}]}
    I/flutter (21224): 0.8297048120160494
    I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.3877294684577154}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.7549218291162099}]}
    I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.3877294684577154}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.7549218291162099}]}


    As you can see every time the algorithm prints =======NEW BEST======= : //new best score, followed by the JSON of the new best solution. The JSON text at the end is what the function solve() returns. As you can see the ending JSON Text is unlike any previously printed JSON.



    Thanks in advance for anyone even reading this and trying to help me!










    share|improve this question

























      0












      0








      0


      1






      In my app i use a genetic algorithm to get a good result to a certain problem. The algorithm itself is synchronous, but the function calling it is asynchronous to keep the UI from freezing.



      In my algorithm, the variable bestSolution keeps the best solution the algorithm has produced so far. It gets changed whenever the algorithm finds a solution that is better than the current bestSolution. When it's changed i also print the new bestSolution into the log.



      After the algorithm is finished(currently finishes after 500 generations), bestSolution is passed to the function that called the genetic algorithm to update the UI. But the bestSolution at the end is completely different to any value it has been before. I tried it multiple times, and the end result was never logged in the console, and also was a very bad result for what the algorithm is trying to achieve.



      I'll put the algorithm aswell as some log output here, the function calling it just calls the solve() function of my GeneticAlgorithmSolver. Any help is very much appreciated.



      The algorithm:



      import 'dart:math';

      import 'package:flutter/material.dart';
      import 'package:meal_tracker/model/meal.dart';

      class GeneticAlgorithmSolver {
      Random random = Random();

      List<Meal> breakfasts;
      List<Meal> lunches;
      List<Meal> dinners;

      double proteinGoal;
      double carbGoal;
      double fatGoal;

      int generationCount;
      int populationCount;
      double mutationChance;

      List currentGen;

      GeneticAlgorithmSolver(
      {this.breakfasts,
      this.lunches,
      this.dinners,
      this.proteinGoal,
      this.carbGoal,
      this.fatGoal,
      this.generationCount,
      this.populationCount,
      this.mutationChance})
      : assert(breakfasts.length > 0),
      assert(lunches.length > 0),
      assert(dinners.length > 0);

      List bestSolution;
      double bestSolutionFitness = 0.0;

      //This function generates the first generation, and then calls nextGen() as often as generationCount.
      //At the end it returns bestSolution, which is changed throughout the algorithm within the nextGen() function.
      List solve() {
      currentGen = generateFirstGen(
      breakfasts: breakfasts, lunches: lunches, dinners: dinners);
      print("population size: " + currentGen.length.toString());
      for (int i = 0; i < generationCount; i++) {
      print("Starting generation: " + i.toString());
      currentGen = nextGen(currentGen);
      if (generationCount - i == 1) {
      print(bestSolution[0].toJson());
      }
      }
      print(bestSolutionFitness);
      print(bestSolution[0].toJson());
      return bestSolution;
      }

      //This function returns as many random solutions as populationCount, therefore generating the first generation.
      //I'm pretty sure that the bug is not in here.
      List<List<Meal>> generateFirstGen(
      {@required List breakfasts,
      @required List lunches,
      @required List dinners}) {
      List<List<Meal>> gen = ;

      for (int i = 0; i < populationCount; i++) {
      List<Meal> list = [
      breakfasts[(random.nextDouble() * (breakfasts.length - 1)).round()],
      lunches[(random.nextDouble() * (lunches.length - 1)).round()],
      dinners[(random.nextDouble() * (dinners.length - 1)).round()]
      ];
      for (int y = 0; y < list.length; y++) {
      for (int z = 0; z < list[y].foods.length; z++) {
      list[y].setFactor(z, random.nextDouble());
      }
      }
      gen.add(list);
      }
      return gen;
      }

      double calculateFitness(num current, num max) {
      double fitness = (current / max).clamp(0, 2);
      if (fitness > 1) {
      return 2 - fitness;
      }
      assert(fitness > 0 && fitness <= 1);
      return fitness;
      }

      //This function takes the current generation and sorts the results based on their fitness(how good they are)
      //Then it merges results and returns a new generation.
      List<List<Meal>> nextGen(List<List<Meal>> currentGen) {
      List<List<Meal>> nextGen = ;

      List<Map<String, dynamic>> fitnessMap = ;

      currentGen.forEach((f) {
      double protein = 0.0;
      double fat = 0.0;
      double carb = 0.0;

      for (int i = 0; i < f.length; i++) {
      protein += f[i].calculateProtein();
      fat += f[i].calculateFat();
      carb += f[i].calculateCarbs();
      }

      fitnessMap.add({
      "day": f,
      "fitness": (calculateFitness(protein, proteinGoal) +
      calculateFitness(fat, fatGoal) +
      calculateFitness(carb, carbGoal)) /
      3
      });
      });

      List sortedGen = ;

      //Simple Bubblesort to sort the results based on their fitness.
      bool sorted = false;

      for (int i = 0; i < fitnessMap.length && !sorted; i++) {
      sorted = true;
      for (int y = 0; y < fitnessMap.length - i - 1; y++) {
      if (fitnessMap[y]["fitness"] > fitnessMap[y + 1]["fitness"]) {
      sorted = false;
      Map temp = fitnessMap[y];
      fitnessMap[y] = fitnessMap[y + 1];
      fitnessMap[y + 1] = temp;
      }
      }
      }

      print(List.generate(fitnessMap.length, (i) => fitnessMap[i]["fitness"]));

      //Since fitnessMap is sorted, the last item should be the best(the one with the highest fitness)
      Map bestResult = fitnessMap[fitnessMap.length - 1];

      //If then the current best result is better than the overall best result, the current best becomes the new overall best.
      if (bestResult["fitness"] > bestSolutionFitness) {
      print("=======NEW BEST======= : " + bestResult["fitness"].toString());
      print(List.generate(
      bestResult["day"].length, (i) => bestResult["day"][i].toJson()));

      double protein = 0.0;
      double fat = 0.0;
      double carb = 0.0;

      for (int i = 0; i < bestResult["day"].length; i++) {
      protein += bestResult["day"][i].calculateProtein();
      fat += bestResult["day"][i].calculateFat();
      carb += bestResult["day"][i].calculateCarbs();
      }

      var calcut = (calculateFitness(protein, proteinGoal) +
      calculateFitness(fat, fatGoal) +
      calculateFitness(carb, carbGoal)) /
      3;

      print("=======Calculat======= : " + calcut.toString());
      bestSolution = bestResult["day"];
      print(bestSolution[0].toJson());
      print(bestResult["day"][0].toJson());
      bestSolutionFitness = bestResult["fitness"];
      }

      sortedGen = List.generate(fitnessMap.length, (i) => fitnessMap[i]["day"]);

      //Here is the merging process, it's very messy and the bug is not here for sure.
      for (int i = 0; i < populationCount; i++) {
      List child;
      List firstParent = sortedGen[min(
      (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
      sortedGen.length - 1)];
      child = firstParent;
      int firstIndex = random.nextInt(child.length);
      int secondIndex = random.nextInt(child.length);
      List secondParent = sortedGen[min(
      (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
      sortedGen.length - 1)];
      for (int i = min(firstIndex, secondIndex);
      i < max(firstIndex, secondIndex);
      i++) {
      child[i] = secondParent[i];
      }

      for (int i = 0; i < child.length; i++) {
      if (random.nextDouble() <= mutationChance) {
      switch (i) {
      case 0:
      child[i] = breakfasts[
      (random.nextDouble() * (breakfasts.length - 1)).round()];
      break;
      case 1:
      child[i] =
      lunches[(random.nextDouble() * (lunches.length - 1)).round()];
      break;
      case 2:
      child[i] =
      dinners[(random.nextDouble() * (dinners.length - 1)).round()];
      break;
      }
      }
      }

      for (int i = 0; i < child.length; i++) {
      for (int y = 0; y < child[i].getItemCount; y++) {
      if (random.nextDouble() <= mutationChance) {
      child[i].setFactor(y, random.nextDouble());
      }
      }
      }

      nextGen.add(child);
      }

      return nextGen;
      }
      }


      Here is a sample log output, i decreased the number of generations to 20 so StackOverflow doesn't complain about spam:



      I/flutter (21224): Starting generation: 0
      I/flutter (21224): [0.5313978709043187, 0.5313978709043187, 0.5313978709043187, 0.5313978709043187, 0.5313978709043187, 0.7299423655395717, 0.7299423655395717, 0.7299423655395717, 0.7374132001763957, 0.8297048120160494]
      I/flutter (21224): =======NEW BEST======= : 0.8297048120160494
      I/flutter (21224): [{name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.819958805652279}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.2969825022643108}]}, {name: Reis mit Hänchen, ingredients: [{food: {name: Naturreis, fat: 2.2, saturatedFat: 0.6, carb: 74.0, sugar: 0.7, fiber: 2.2, protein: 7.8, sodium: 0.01, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: vegetables, barcode: 4019339212189}, amount: 100.0, scalability: 75.0, factor: 0.69
      I/flutter (21224): =======Calculat======= : 0.8297048120160494
      I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.819958805652279}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.2969825022643108}]}
      I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.819958805652279}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.2969825022643108}]}
      I/flutter (21224): Starting generation: 1
      I/flutter (21224): [0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.7075198382526259, 0.7075198382526259, 0.7075198382526259]
      I/flutter (21224): Starting generation: 2
      I/flutter (21224): [0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.737783580588736, 0.737783580588736, 0.737783580588736, 0.737783580588736]
      I/flutter (21224): Starting generation: 3
      I/flutter (21224): [0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959]
      I/flutter (21224): Starting generation: 4
      I/flutter (21224): [0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459]
      I/flutter (21224): Starting generation: 5
      I/flutter (21224): [0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794]
      I/flutter (21224): Starting generation: 6
      I/flutter (21224): [0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283]
      I/flutter (21224): Starting generation: 7
      I/flutter (21224): [0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635]
      I/flutter (21224): Starting generation: 8
      I/flutter (21224): [0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798]
      I/flutter (21224): Starting generation: 9
      I/flutter (21224): [0.4807063467379004, 0.4807063467379004, 0.4807063467379004, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805]
      I/flutter (21224): Starting generation: 10
      I/flutter (21224): [0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169]
      I/flutter (21224): Starting generation: 11
      I/flutter (21224): [0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387]
      I/flutter (21224): Starting generation: 12
      I/flutter (21224): [0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777]
      I/flutter (21224): Starting generation: 13
      I/flutter (21224): [0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626]
      I/flutter (21224): Starting generation: 14
      I/flutter (21224): [0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503]
      I/flutter (21224): Starting generation: 15
      I/flutter (21224): [0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633]
      I/flutter (21224): Starting generation: 16
      I/flutter (21224): [0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226]
      I/flutter (21224): Starting generation: 17
      I/flutter (21224): [0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354]
      I/flutter (21224): Starting generation: 18
      I/flutter (21224): [0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095]
      I/flutter (21224): Starting generation: 19
      I/flutter (21224): [0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662]
      I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.3877294684577154}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.7549218291162099}]}
      I/flutter (21224): 0.8297048120160494
      I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.3877294684577154}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.7549218291162099}]}
      I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.3877294684577154}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.7549218291162099}]}


      As you can see every time the algorithm prints =======NEW BEST======= : //new best score, followed by the JSON of the new best solution. The JSON text at the end is what the function solve() returns. As you can see the ending JSON Text is unlike any previously printed JSON.



      Thanks in advance for anyone even reading this and trying to help me!










      share|improve this question














      In my app i use a genetic algorithm to get a good result to a certain problem. The algorithm itself is synchronous, but the function calling it is asynchronous to keep the UI from freezing.



      In my algorithm, the variable bestSolution keeps the best solution the algorithm has produced so far. It gets changed whenever the algorithm finds a solution that is better than the current bestSolution. When it's changed i also print the new bestSolution into the log.



      After the algorithm is finished(currently finishes after 500 generations), bestSolution is passed to the function that called the genetic algorithm to update the UI. But the bestSolution at the end is completely different to any value it has been before. I tried it multiple times, and the end result was never logged in the console, and also was a very bad result for what the algorithm is trying to achieve.



      I'll put the algorithm aswell as some log output here, the function calling it just calls the solve() function of my GeneticAlgorithmSolver. Any help is very much appreciated.



      The algorithm:



      import 'dart:math';

      import 'package:flutter/material.dart';
      import 'package:meal_tracker/model/meal.dart';

      class GeneticAlgorithmSolver {
      Random random = Random();

      List<Meal> breakfasts;
      List<Meal> lunches;
      List<Meal> dinners;

      double proteinGoal;
      double carbGoal;
      double fatGoal;

      int generationCount;
      int populationCount;
      double mutationChance;

      List currentGen;

      GeneticAlgorithmSolver(
      {this.breakfasts,
      this.lunches,
      this.dinners,
      this.proteinGoal,
      this.carbGoal,
      this.fatGoal,
      this.generationCount,
      this.populationCount,
      this.mutationChance})
      : assert(breakfasts.length > 0),
      assert(lunches.length > 0),
      assert(dinners.length > 0);

      List bestSolution;
      double bestSolutionFitness = 0.0;

      //This function generates the first generation, and then calls nextGen() as often as generationCount.
      //At the end it returns bestSolution, which is changed throughout the algorithm within the nextGen() function.
      List solve() {
      currentGen = generateFirstGen(
      breakfasts: breakfasts, lunches: lunches, dinners: dinners);
      print("population size: " + currentGen.length.toString());
      for (int i = 0; i < generationCount; i++) {
      print("Starting generation: " + i.toString());
      currentGen = nextGen(currentGen);
      if (generationCount - i == 1) {
      print(bestSolution[0].toJson());
      }
      }
      print(bestSolutionFitness);
      print(bestSolution[0].toJson());
      return bestSolution;
      }

      //This function returns as many random solutions as populationCount, therefore generating the first generation.
      //I'm pretty sure that the bug is not in here.
      List<List<Meal>> generateFirstGen(
      {@required List breakfasts,
      @required List lunches,
      @required List dinners}) {
      List<List<Meal>> gen = ;

      for (int i = 0; i < populationCount; i++) {
      List<Meal> list = [
      breakfasts[(random.nextDouble() * (breakfasts.length - 1)).round()],
      lunches[(random.nextDouble() * (lunches.length - 1)).round()],
      dinners[(random.nextDouble() * (dinners.length - 1)).round()]
      ];
      for (int y = 0; y < list.length; y++) {
      for (int z = 0; z < list[y].foods.length; z++) {
      list[y].setFactor(z, random.nextDouble());
      }
      }
      gen.add(list);
      }
      return gen;
      }

      double calculateFitness(num current, num max) {
      double fitness = (current / max).clamp(0, 2);
      if (fitness > 1) {
      return 2 - fitness;
      }
      assert(fitness > 0 && fitness <= 1);
      return fitness;
      }

      //This function takes the current generation and sorts the results based on their fitness(how good they are)
      //Then it merges results and returns a new generation.
      List<List<Meal>> nextGen(List<List<Meal>> currentGen) {
      List<List<Meal>> nextGen = ;

      List<Map<String, dynamic>> fitnessMap = ;

      currentGen.forEach((f) {
      double protein = 0.0;
      double fat = 0.0;
      double carb = 0.0;

      for (int i = 0; i < f.length; i++) {
      protein += f[i].calculateProtein();
      fat += f[i].calculateFat();
      carb += f[i].calculateCarbs();
      }

      fitnessMap.add({
      "day": f,
      "fitness": (calculateFitness(protein, proteinGoal) +
      calculateFitness(fat, fatGoal) +
      calculateFitness(carb, carbGoal)) /
      3
      });
      });

      List sortedGen = ;

      //Simple Bubblesort to sort the results based on their fitness.
      bool sorted = false;

      for (int i = 0; i < fitnessMap.length && !sorted; i++) {
      sorted = true;
      for (int y = 0; y < fitnessMap.length - i - 1; y++) {
      if (fitnessMap[y]["fitness"] > fitnessMap[y + 1]["fitness"]) {
      sorted = false;
      Map temp = fitnessMap[y];
      fitnessMap[y] = fitnessMap[y + 1];
      fitnessMap[y + 1] = temp;
      }
      }
      }

      print(List.generate(fitnessMap.length, (i) => fitnessMap[i]["fitness"]));

      //Since fitnessMap is sorted, the last item should be the best(the one with the highest fitness)
      Map bestResult = fitnessMap[fitnessMap.length - 1];

      //If then the current best result is better than the overall best result, the current best becomes the new overall best.
      if (bestResult["fitness"] > bestSolutionFitness) {
      print("=======NEW BEST======= : " + bestResult["fitness"].toString());
      print(List.generate(
      bestResult["day"].length, (i) => bestResult["day"][i].toJson()));

      double protein = 0.0;
      double fat = 0.0;
      double carb = 0.0;

      for (int i = 0; i < bestResult["day"].length; i++) {
      protein += bestResult["day"][i].calculateProtein();
      fat += bestResult["day"][i].calculateFat();
      carb += bestResult["day"][i].calculateCarbs();
      }

      var calcut = (calculateFitness(protein, proteinGoal) +
      calculateFitness(fat, fatGoal) +
      calculateFitness(carb, carbGoal)) /
      3;

      print("=======Calculat======= : " + calcut.toString());
      bestSolution = bestResult["day"];
      print(bestSolution[0].toJson());
      print(bestResult["day"][0].toJson());
      bestSolutionFitness = bestResult["fitness"];
      }

      sortedGen = List.generate(fitnessMap.length, (i) => fitnessMap[i]["day"]);

      //Here is the merging process, it's very messy and the bug is not here for sure.
      for (int i = 0; i < populationCount; i++) {
      List child;
      List firstParent = sortedGen[min(
      (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
      sortedGen.length - 1)];
      child = firstParent;
      int firstIndex = random.nextInt(child.length);
      int secondIndex = random.nextInt(child.length);
      List secondParent = sortedGen[min(
      (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
      sortedGen.length - 1)];
      for (int i = min(firstIndex, secondIndex);
      i < max(firstIndex, secondIndex);
      i++) {
      child[i] = secondParent[i];
      }

      for (int i = 0; i < child.length; i++) {
      if (random.nextDouble() <= mutationChance) {
      switch (i) {
      case 0:
      child[i] = breakfasts[
      (random.nextDouble() * (breakfasts.length - 1)).round()];
      break;
      case 1:
      child[i] =
      lunches[(random.nextDouble() * (lunches.length - 1)).round()];
      break;
      case 2:
      child[i] =
      dinners[(random.nextDouble() * (dinners.length - 1)).round()];
      break;
      }
      }
      }

      for (int i = 0; i < child.length; i++) {
      for (int y = 0; y < child[i].getItemCount; y++) {
      if (random.nextDouble() <= mutationChance) {
      child[i].setFactor(y, random.nextDouble());
      }
      }
      }

      nextGen.add(child);
      }

      return nextGen;
      }
      }


      Here is a sample log output, i decreased the number of generations to 20 so StackOverflow doesn't complain about spam:



      I/flutter (21224): Starting generation: 0
      I/flutter (21224): [0.5313978709043187, 0.5313978709043187, 0.5313978709043187, 0.5313978709043187, 0.5313978709043187, 0.7299423655395717, 0.7299423655395717, 0.7299423655395717, 0.7374132001763957, 0.8297048120160494]
      I/flutter (21224): =======NEW BEST======= : 0.8297048120160494
      I/flutter (21224): [{name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.819958805652279}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.2969825022643108}]}, {name: Reis mit Hänchen, ingredients: [{food: {name: Naturreis, fat: 2.2, saturatedFat: 0.6, carb: 74.0, sugar: 0.7, fiber: 2.2, protein: 7.8, sodium: 0.01, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: vegetables, barcode: 4019339212189}, amount: 100.0, scalability: 75.0, factor: 0.69
      I/flutter (21224): =======Calculat======= : 0.8297048120160494
      I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.819958805652279}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.2969825022643108}]}
      I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.819958805652279}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.2969825022643108}]}
      I/flutter (21224): Starting generation: 1
      I/flutter (21224): [0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.7075198382526259, 0.7075198382526259, 0.7075198382526259]
      I/flutter (21224): Starting generation: 2
      I/flutter (21224): [0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.5283462335935579, 0.737783580588736, 0.737783580588736, 0.737783580588736, 0.737783580588736]
      I/flutter (21224): Starting generation: 3
      I/flutter (21224): [0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959, 0.738428332595959]
      I/flutter (21224): Starting generation: 4
      I/flutter (21224): [0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459, 0.7258426264768459]
      I/flutter (21224): Starting generation: 5
      I/flutter (21224): [0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794, 0.5589823816277794]
      I/flutter (21224): Starting generation: 6
      I/flutter (21224): [0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283, 0.5574443375428283]
      I/flutter (21224): Starting generation: 7
      I/flutter (21224): [0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635, 0.48318974082968635]
      I/flutter (21224): Starting generation: 8
      I/flutter (21224): [0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798, 0.4932906839506798]
      I/flutter (21224): Starting generation: 9
      I/flutter (21224): [0.4807063467379004, 0.4807063467379004, 0.4807063467379004, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805, 0.8154292293208805]
      I/flutter (21224): Starting generation: 10
      I/flutter (21224): [0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169, 0.4718540151810169]
      I/flutter (21224): Starting generation: 11
      I/flutter (21224): [0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387, 0.5314764343948387]
      I/flutter (21224): Starting generation: 12
      I/flutter (21224): [0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777, 0.5256306490767777]
      I/flutter (21224): Starting generation: 13
      I/flutter (21224): [0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626, 0.48081998808270626]
      I/flutter (21224): Starting generation: 14
      I/flutter (21224): [0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503, 0.46594810317838503]
      I/flutter (21224): Starting generation: 15
      I/flutter (21224): [0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633, 0.6831840326295633]
      I/flutter (21224): Starting generation: 16
      I/flutter (21224): [0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226, 0.6642059362880226]
      I/flutter (21224): Starting generation: 17
      I/flutter (21224): [0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354, 0.4404899494909354]
      I/flutter (21224): Starting generation: 18
      I/flutter (21224): [0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095, 0.6809769097776095]
      I/flutter (21224): Starting generation: 19
      I/flutter (21224): [0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662, 0.6818085009500662]
      I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.3877294684577154}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.7549218291162099}]}
      I/flutter (21224): 0.8297048120160494
      I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.3877294684577154}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.7549218291162099}]}
      I/flutter (21224): {name: Haferflocken mit Milch, ingredients: [{food: {name: Haferflocken, fat: 7.1, saturatedFat: 1.5, carb: 56.0, sugar: 1.1, fiber: 9.7, protein: 11.0, sodium: 0.02, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: grain, barcode: 4019339242018}, amount: 150.0, scalability: 100.0, factor: 0.3877294684577154}, {food: {name: Vollmilch, fat: 4.0, saturatedFat: 2.6, carb: 4.9, sugar: 4.9, fiber: null, protein: 3.3, sodium: 0.11, vitaminA: null, vitaminC: null, vitaminD: null, vitaminE: null, iron: null, calcium: null, foodtype: dairy, barcode: 4101530001157}, amount: 400.0, scalability: 200.0, factor: 0.7549218291162099}]}


      As you can see every time the algorithm prints =======NEW BEST======= : //new best score, followed by the JSON of the new best solution. The JSON text at the end is what the function solve() returns. As you can see the ending JSON Text is unlike any previously printed JSON.



      Thanks in advance for anyone even reading this and trying to help me!







      dart flutter genetic-algorithm






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 24 '18 at 17:20









      01leo01leo

      516114




      516114
























          1 Answer
          1






          active

          oldest

          votes


















          0














          You need to be copying Meals and List<Meals> instead you are mutating them in place in your mutation procedure. Notice how you do



                List child;
          List firstParent = sortedGen[min(
          (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
          sortedGen.length - 1)];
          child = firstParent;
          int firstIndex = random.nextInt(child.length);
          int secondIndex = random.nextInt(child.length);
          List secondParent = sortedGen[min(
          (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
          sortedGen.length - 1)];
          for (int i = min(firstIndex, secondIndex);
          i < max(firstIndex, secondIndex);
          i++) {
          child[i] = secondParent[i];
          }


          And then you do:



            for (int i = 0; i < child.length; i++) {
          for (int y = 0; y < child[i].getItemCount; y++) {
          if (random.nextDouble() <= mutationChance) {
          child[i].setFactor(y, random.nextDouble());
          }
          }
          }


          In this case you are just mutating meals that compose parents. Instead you need to do a deep copy.






          share|improve this answer
























          • I don't really understand what you're saying: Once i mutate to throw in random new meals, and once I just mutate their factor. But both are applied to the child list, which then gets put into the nextGen list. Also please explain what "deep copy" means.

            – 01leo
            Nov 29 '18 at 20:35













          • Your child list is exactly the same list as firstParent because you do child = firstParent. Dart does not copy lists when you assign one variable to another. So if you write List a = ; List b = a; b.add(10); print(a); print(b); you will get [10] printed two times - because a and b point to exactly the same list. In your code nextGen list ends up filled with reference to a single list repeating again and again. You can actually see this from fitness printout - all fitness values are the same. Because all elements are the same.

            – Vyacheslav Egorov
            Nov 29 '18 at 22:08













          • "deep copy" means that you need to copy list and it's contents recursively. Wikipedia has some explanations: en.wikipedia.org/wiki/Object_copying#Deep_copy

            – Vyacheslav Egorov
            Nov 29 '18 at 22:10











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53460609%2fgenetic-algorithm-spits-out-strange-result-in-dart-flutter%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0














          You need to be copying Meals and List<Meals> instead you are mutating them in place in your mutation procedure. Notice how you do



                List child;
          List firstParent = sortedGen[min(
          (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
          sortedGen.length - 1)];
          child = firstParent;
          int firstIndex = random.nextInt(child.length);
          int secondIndex = random.nextInt(child.length);
          List secondParent = sortedGen[min(
          (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
          sortedGen.length - 1)];
          for (int i = min(firstIndex, secondIndex);
          i < max(firstIndex, secondIndex);
          i++) {
          child[i] = secondParent[i];
          }


          And then you do:



            for (int i = 0; i < child.length; i++) {
          for (int y = 0; y < child[i].getItemCount; y++) {
          if (random.nextDouble() <= mutationChance) {
          child[i].setFactor(y, random.nextDouble());
          }
          }
          }


          In this case you are just mutating meals that compose parents. Instead you need to do a deep copy.






          share|improve this answer
























          • I don't really understand what you're saying: Once i mutate to throw in random new meals, and once I just mutate their factor. But both are applied to the child list, which then gets put into the nextGen list. Also please explain what "deep copy" means.

            – 01leo
            Nov 29 '18 at 20:35













          • Your child list is exactly the same list as firstParent because you do child = firstParent. Dart does not copy lists when you assign one variable to another. So if you write List a = ; List b = a; b.add(10); print(a); print(b); you will get [10] printed two times - because a and b point to exactly the same list. In your code nextGen list ends up filled with reference to a single list repeating again and again. You can actually see this from fitness printout - all fitness values are the same. Because all elements are the same.

            – Vyacheslav Egorov
            Nov 29 '18 at 22:08













          • "deep copy" means that you need to copy list and it's contents recursively. Wikipedia has some explanations: en.wikipedia.org/wiki/Object_copying#Deep_copy

            – Vyacheslav Egorov
            Nov 29 '18 at 22:10
















          0














          You need to be copying Meals and List<Meals> instead you are mutating them in place in your mutation procedure. Notice how you do



                List child;
          List firstParent = sortedGen[min(
          (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
          sortedGen.length - 1)];
          child = firstParent;
          int firstIndex = random.nextInt(child.length);
          int secondIndex = random.nextInt(child.length);
          List secondParent = sortedGen[min(
          (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
          sortedGen.length - 1)];
          for (int i = min(firstIndex, secondIndex);
          i < max(firstIndex, secondIndex);
          i++) {
          child[i] = secondParent[i];
          }


          And then you do:



            for (int i = 0; i < child.length; i++) {
          for (int y = 0; y < child[i].getItemCount; y++) {
          if (random.nextDouble() <= mutationChance) {
          child[i].setFactor(y, random.nextDouble());
          }
          }
          }


          In this case you are just mutating meals that compose parents. Instead you need to do a deep copy.






          share|improve this answer
























          • I don't really understand what you're saying: Once i mutate to throw in random new meals, and once I just mutate their factor. But both are applied to the child list, which then gets put into the nextGen list. Also please explain what "deep copy" means.

            – 01leo
            Nov 29 '18 at 20:35













          • Your child list is exactly the same list as firstParent because you do child = firstParent. Dart does not copy lists when you assign one variable to another. So if you write List a = ; List b = a; b.add(10); print(a); print(b); you will get [10] printed two times - because a and b point to exactly the same list. In your code nextGen list ends up filled with reference to a single list repeating again and again. You can actually see this from fitness printout - all fitness values are the same. Because all elements are the same.

            – Vyacheslav Egorov
            Nov 29 '18 at 22:08













          • "deep copy" means that you need to copy list and it's contents recursively. Wikipedia has some explanations: en.wikipedia.org/wiki/Object_copying#Deep_copy

            – Vyacheslav Egorov
            Nov 29 '18 at 22:10














          0












          0








          0







          You need to be copying Meals and List<Meals> instead you are mutating them in place in your mutation procedure. Notice how you do



                List child;
          List firstParent = sortedGen[min(
          (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
          sortedGen.length - 1)];
          child = firstParent;
          int firstIndex = random.nextInt(child.length);
          int secondIndex = random.nextInt(child.length);
          List secondParent = sortedGen[min(
          (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
          sortedGen.length - 1)];
          for (int i = min(firstIndex, secondIndex);
          i < max(firstIndex, secondIndex);
          i++) {
          child[i] = secondParent[i];
          }


          And then you do:



            for (int i = 0; i < child.length; i++) {
          for (int y = 0; y < child[i].getItemCount; y++) {
          if (random.nextDouble() <= mutationChance) {
          child[i].setFactor(y, random.nextDouble());
          }
          }
          }


          In this case you are just mutating meals that compose parents. Instead you need to do a deep copy.






          share|improve this answer













          You need to be copying Meals and List<Meals> instead you are mutating them in place in your mutation procedure. Notice how you do



                List child;
          List firstParent = sortedGen[min(
          (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
          sortedGen.length - 1)];
          child = firstParent;
          int firstIndex = random.nextInt(child.length);
          int secondIndex = random.nextInt(child.length);
          List secondParent = sortedGen[min(
          (sqrt(random.nextDouble()) * (sortedGen.length - 1)).round(),
          sortedGen.length - 1)];
          for (int i = min(firstIndex, secondIndex);
          i < max(firstIndex, secondIndex);
          i++) {
          child[i] = secondParent[i];
          }


          And then you do:



            for (int i = 0; i < child.length; i++) {
          for (int y = 0; y < child[i].getItemCount; y++) {
          if (random.nextDouble() <= mutationChance) {
          child[i].setFactor(y, random.nextDouble());
          }
          }
          }


          In this case you are just mutating meals that compose parents. Instead you need to do a deep copy.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Nov 28 '18 at 14:39









          Vyacheslav EgorovVyacheslav Egorov

          8,95023239




          8,95023239













          • I don't really understand what you're saying: Once i mutate to throw in random new meals, and once I just mutate their factor. But both are applied to the child list, which then gets put into the nextGen list. Also please explain what "deep copy" means.

            – 01leo
            Nov 29 '18 at 20:35













          • Your child list is exactly the same list as firstParent because you do child = firstParent. Dart does not copy lists when you assign one variable to another. So if you write List a = ; List b = a; b.add(10); print(a); print(b); you will get [10] printed two times - because a and b point to exactly the same list. In your code nextGen list ends up filled with reference to a single list repeating again and again. You can actually see this from fitness printout - all fitness values are the same. Because all elements are the same.

            – Vyacheslav Egorov
            Nov 29 '18 at 22:08













          • "deep copy" means that you need to copy list and it's contents recursively. Wikipedia has some explanations: en.wikipedia.org/wiki/Object_copying#Deep_copy

            – Vyacheslav Egorov
            Nov 29 '18 at 22:10



















          • I don't really understand what you're saying: Once i mutate to throw in random new meals, and once I just mutate their factor. But both are applied to the child list, which then gets put into the nextGen list. Also please explain what "deep copy" means.

            – 01leo
            Nov 29 '18 at 20:35













          • Your child list is exactly the same list as firstParent because you do child = firstParent. Dart does not copy lists when you assign one variable to another. So if you write List a = ; List b = a; b.add(10); print(a); print(b); you will get [10] printed two times - because a and b point to exactly the same list. In your code nextGen list ends up filled with reference to a single list repeating again and again. You can actually see this from fitness printout - all fitness values are the same. Because all elements are the same.

            – Vyacheslav Egorov
            Nov 29 '18 at 22:08













          • "deep copy" means that you need to copy list and it's contents recursively. Wikipedia has some explanations: en.wikipedia.org/wiki/Object_copying#Deep_copy

            – Vyacheslav Egorov
            Nov 29 '18 at 22:10

















          I don't really understand what you're saying: Once i mutate to throw in random new meals, and once I just mutate their factor. But both are applied to the child list, which then gets put into the nextGen list. Also please explain what "deep copy" means.

          – 01leo
          Nov 29 '18 at 20:35







          I don't really understand what you're saying: Once i mutate to throw in random new meals, and once I just mutate their factor. But both are applied to the child list, which then gets put into the nextGen list. Also please explain what "deep copy" means.

          – 01leo
          Nov 29 '18 at 20:35















          Your child list is exactly the same list as firstParent because you do child = firstParent. Dart does not copy lists when you assign one variable to another. So if you write List a = ; List b = a; b.add(10); print(a); print(b); you will get [10] printed two times - because a and b point to exactly the same list. In your code nextGen list ends up filled with reference to a single list repeating again and again. You can actually see this from fitness printout - all fitness values are the same. Because all elements are the same.

          – Vyacheslav Egorov
          Nov 29 '18 at 22:08







          Your child list is exactly the same list as firstParent because you do child = firstParent. Dart does not copy lists when you assign one variable to another. So if you write List a = ; List b = a; b.add(10); print(a); print(b); you will get [10] printed two times - because a and b point to exactly the same list. In your code nextGen list ends up filled with reference to a single list repeating again and again. You can actually see this from fitness printout - all fitness values are the same. Because all elements are the same.

          – Vyacheslav Egorov
          Nov 29 '18 at 22:08















          "deep copy" means that you need to copy list and it's contents recursively. Wikipedia has some explanations: en.wikipedia.org/wiki/Object_copying#Deep_copy

          – Vyacheslav Egorov
          Nov 29 '18 at 22:10





          "deep copy" means that you need to copy list and it's contents recursively. Wikipedia has some explanations: en.wikipedia.org/wiki/Object_copying#Deep_copy

          – Vyacheslav Egorov
          Nov 29 '18 at 22:10




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53460609%2fgenetic-algorithm-spits-out-strange-result-in-dart-flutter%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen