Solving system of nonlinear differential equation in MAPLE












0












$begingroup$


I'am working out on nonlinear differential equation and I need to find the equilibrium point which means all the system is equal to zero.
Here is the System of Diferential Equation:



begin{align*}
frac{dS}{dt} &= alpha - beta SV - delta S \
frac{dI}{dt} &= beta SV - sigma I \
frac{dV}{dt} &= mu nI - gamma_1 V - gamma_2 V - gamma_3 V - beta SV
end{align*}



then, to find the equilibrium point set $frac{dS}{dt} = frac{dI}{dI} = frac{dV}{dt} = 0$. It means that I have to solve the system of equation
begin{align*}
alpha - beta SV - delta S &=0 \
beta SV - sigma I &= 0\
mu nI - gamma_1 V - gamma_2 V - gamma_3 V - beta SV &=0
end{align*}



I've got the result by solving it manually but Can I use MAPLE software to solve this problem?



What I've done manually:
$V = frac{alpha - delta S}{beta S}, I = frac{alpha - delta S}{sigma}, S = frac{alpha}{delta} text{ or } S = frac{(gamma_1 +gamma_2+gamma_3)sigma}{beta(mu n - sigma)} $










share|cite|improve this question











$endgroup$












  • $begingroup$
    What result have you got?
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 22 '18 at 11:50










  • $begingroup$
    I've made some changes to my post @Dr.SonnhardGraubner
    $endgroup$
    – SutMar
    Dec 22 '18 at 12:06










  • $begingroup$
    I have solved it with Maple and now?
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 22 '18 at 12:29










  • $begingroup$
    I will feel happy if you are willing to teach it to me.
    $endgroup$
    – SutMar
    Dec 22 '18 at 13:04
















0












$begingroup$


I'am working out on nonlinear differential equation and I need to find the equilibrium point which means all the system is equal to zero.
Here is the System of Diferential Equation:



begin{align*}
frac{dS}{dt} &= alpha - beta SV - delta S \
frac{dI}{dt} &= beta SV - sigma I \
frac{dV}{dt} &= mu nI - gamma_1 V - gamma_2 V - gamma_3 V - beta SV
end{align*}



then, to find the equilibrium point set $frac{dS}{dt} = frac{dI}{dI} = frac{dV}{dt} = 0$. It means that I have to solve the system of equation
begin{align*}
alpha - beta SV - delta S &=0 \
beta SV - sigma I &= 0\
mu nI - gamma_1 V - gamma_2 V - gamma_3 V - beta SV &=0
end{align*}



I've got the result by solving it manually but Can I use MAPLE software to solve this problem?



What I've done manually:
$V = frac{alpha - delta S}{beta S}, I = frac{alpha - delta S}{sigma}, S = frac{alpha}{delta} text{ or } S = frac{(gamma_1 +gamma_2+gamma_3)sigma}{beta(mu n - sigma)} $










share|cite|improve this question











$endgroup$












  • $begingroup$
    What result have you got?
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 22 '18 at 11:50










  • $begingroup$
    I've made some changes to my post @Dr.SonnhardGraubner
    $endgroup$
    – SutMar
    Dec 22 '18 at 12:06










  • $begingroup$
    I have solved it with Maple and now?
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 22 '18 at 12:29










  • $begingroup$
    I will feel happy if you are willing to teach it to me.
    $endgroup$
    – SutMar
    Dec 22 '18 at 13:04














0












0








0





$begingroup$


I'am working out on nonlinear differential equation and I need to find the equilibrium point which means all the system is equal to zero.
Here is the System of Diferential Equation:



begin{align*}
frac{dS}{dt} &= alpha - beta SV - delta S \
frac{dI}{dt} &= beta SV - sigma I \
frac{dV}{dt} &= mu nI - gamma_1 V - gamma_2 V - gamma_3 V - beta SV
end{align*}



then, to find the equilibrium point set $frac{dS}{dt} = frac{dI}{dI} = frac{dV}{dt} = 0$. It means that I have to solve the system of equation
begin{align*}
alpha - beta SV - delta S &=0 \
beta SV - sigma I &= 0\
mu nI - gamma_1 V - gamma_2 V - gamma_3 V - beta SV &=0
end{align*}



I've got the result by solving it manually but Can I use MAPLE software to solve this problem?



What I've done manually:
$V = frac{alpha - delta S}{beta S}, I = frac{alpha - delta S}{sigma}, S = frac{alpha}{delta} text{ or } S = frac{(gamma_1 +gamma_2+gamma_3)sigma}{beta(mu n - sigma)} $










share|cite|improve this question











$endgroup$




I'am working out on nonlinear differential equation and I need to find the equilibrium point which means all the system is equal to zero.
Here is the System of Diferential Equation:



begin{align*}
frac{dS}{dt} &= alpha - beta SV - delta S \
frac{dI}{dt} &= beta SV - sigma I \
frac{dV}{dt} &= mu nI - gamma_1 V - gamma_2 V - gamma_3 V - beta SV
end{align*}



then, to find the equilibrium point set $frac{dS}{dt} = frac{dI}{dI} = frac{dV}{dt} = 0$. It means that I have to solve the system of equation
begin{align*}
alpha - beta SV - delta S &=0 \
beta SV - sigma I &= 0\
mu nI - gamma_1 V - gamma_2 V - gamma_3 V - beta SV &=0
end{align*}



I've got the result by solving it manually but Can I use MAPLE software to solve this problem?



What I've done manually:
$V = frac{alpha - delta S}{beta S}, I = frac{alpha - delta S}{sigma}, S = frac{alpha}{delta} text{ or } S = frac{(gamma_1 +gamma_2+gamma_3)sigma}{beta(mu n - sigma)} $







maple






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 22 '18 at 12:05







SutMar

















asked Dec 22 '18 at 11:42









SutMarSutMar

1007




1007












  • $begingroup$
    What result have you got?
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 22 '18 at 11:50










  • $begingroup$
    I've made some changes to my post @Dr.SonnhardGraubner
    $endgroup$
    – SutMar
    Dec 22 '18 at 12:06










  • $begingroup$
    I have solved it with Maple and now?
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 22 '18 at 12:29










  • $begingroup$
    I will feel happy if you are willing to teach it to me.
    $endgroup$
    – SutMar
    Dec 22 '18 at 13:04


















  • $begingroup$
    What result have you got?
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 22 '18 at 11:50










  • $begingroup$
    I've made some changes to my post @Dr.SonnhardGraubner
    $endgroup$
    – SutMar
    Dec 22 '18 at 12:06










  • $begingroup$
    I have solved it with Maple and now?
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 22 '18 at 12:29










  • $begingroup$
    I will feel happy if you are willing to teach it to me.
    $endgroup$
    – SutMar
    Dec 22 '18 at 13:04
















$begingroup$
What result have you got?
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 11:50




$begingroup$
What result have you got?
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 11:50












$begingroup$
I've made some changes to my post @Dr.SonnhardGraubner
$endgroup$
– SutMar
Dec 22 '18 at 12:06




$begingroup$
I've made some changes to my post @Dr.SonnhardGraubner
$endgroup$
– SutMar
Dec 22 '18 at 12:06












$begingroup$
I have solved it with Maple and now?
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 12:29




$begingroup$
I have solved it with Maple and now?
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 12:29












$begingroup$
I will feel happy if you are willing to teach it to me.
$endgroup$
– SutMar
Dec 22 '18 at 13:04




$begingroup$
I will feel happy if you are willing to teach it to me.
$endgroup$
– SutMar
Dec 22 '18 at 13:04










1 Answer
1






active

oldest

votes


















2












$begingroup$

Here is how to do it in Maple



eqs:={alpha-beta*S*V-delta*S,beta*S*V-sigma*II,
mu*n*II-gamma[1]*V-gamma[2]*V-gamma[3]*V-beta*S*V};
vars:={S,II,V};
solve(eqs,vars);



Note that I is a reserved symbol in Maple, so I just used another symbol II for it.



Maple yields two solutions
$$
left{ {it II}=0,S={frac {alpha}{delta}},V=0 right}
$$

and
$$
left{ {it II}={frac {alpha,beta,mu,n-alpha,beta,sigma-
delta,sigma,gamma_{{1}}-delta,sigma,gamma_{{2}}-delta,
sigma,gamma_{{3}}}{beta,sigma, left( mu,n-sigma right) }},
S={frac {sigma, left( gamma_{{1}}+gamma_{{2}}+gamma_{{3}}
right) }{beta, left( mu,n-sigma right) }},
\
V={frac {alpha,
beta,mu,n-alpha,beta,sigma-delta,sigma,gamma_{{1}}-
delta,sigma,gamma_{{2}}-delta,sigma,gamma_{{3}}}{beta,
sigma, left( gamma_{{1}}+gamma_{{2}}+gamma_{{3}} right) }}
right}
$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049346%2fsolving-system-of-nonlinear-differential-equation-in-maple%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Here is how to do it in Maple



    eqs:={alpha-beta*S*V-delta*S,beta*S*V-sigma*II,
    mu*n*II-gamma[1]*V-gamma[2]*V-gamma[3]*V-beta*S*V};
    vars:={S,II,V};
    solve(eqs,vars);



    Note that I is a reserved symbol in Maple, so I just used another symbol II for it.



    Maple yields two solutions
    $$
    left{ {it II}=0,S={frac {alpha}{delta}},V=0 right}
    $$

    and
    $$
    left{ {it II}={frac {alpha,beta,mu,n-alpha,beta,sigma-
    delta,sigma,gamma_{{1}}-delta,sigma,gamma_{{2}}-delta,
    sigma,gamma_{{3}}}{beta,sigma, left( mu,n-sigma right) }},
    S={frac {sigma, left( gamma_{{1}}+gamma_{{2}}+gamma_{{3}}
    right) }{beta, left( mu,n-sigma right) }},
    \
    V={frac {alpha,
    beta,mu,n-alpha,beta,sigma-delta,sigma,gamma_{{1}}-
    delta,sigma,gamma_{{2}}-delta,sigma,gamma_{{3}}}{beta,
    sigma, left( gamma_{{1}}+gamma_{{2}}+gamma_{{3}} right) }}
    right}
    $$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Here is how to do it in Maple



      eqs:={alpha-beta*S*V-delta*S,beta*S*V-sigma*II,
      mu*n*II-gamma[1]*V-gamma[2]*V-gamma[3]*V-beta*S*V};
      vars:={S,II,V};
      solve(eqs,vars);



      Note that I is a reserved symbol in Maple, so I just used another symbol II for it.



      Maple yields two solutions
      $$
      left{ {it II}=0,S={frac {alpha}{delta}},V=0 right}
      $$

      and
      $$
      left{ {it II}={frac {alpha,beta,mu,n-alpha,beta,sigma-
      delta,sigma,gamma_{{1}}-delta,sigma,gamma_{{2}}-delta,
      sigma,gamma_{{3}}}{beta,sigma, left( mu,n-sigma right) }},
      S={frac {sigma, left( gamma_{{1}}+gamma_{{2}}+gamma_{{3}}
      right) }{beta, left( mu,n-sigma right) }},
      \
      V={frac {alpha,
      beta,mu,n-alpha,beta,sigma-delta,sigma,gamma_{{1}}-
      delta,sigma,gamma_{{2}}-delta,sigma,gamma_{{3}}}{beta,
      sigma, left( gamma_{{1}}+gamma_{{2}}+gamma_{{3}} right) }}
      right}
      $$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Here is how to do it in Maple



        eqs:={alpha-beta*S*V-delta*S,beta*S*V-sigma*II,
        mu*n*II-gamma[1]*V-gamma[2]*V-gamma[3]*V-beta*S*V};
        vars:={S,II,V};
        solve(eqs,vars);



        Note that I is a reserved symbol in Maple, so I just used another symbol II for it.



        Maple yields two solutions
        $$
        left{ {it II}=0,S={frac {alpha}{delta}},V=0 right}
        $$

        and
        $$
        left{ {it II}={frac {alpha,beta,mu,n-alpha,beta,sigma-
        delta,sigma,gamma_{{1}}-delta,sigma,gamma_{{2}}-delta,
        sigma,gamma_{{3}}}{beta,sigma, left( mu,n-sigma right) }},
        S={frac {sigma, left( gamma_{{1}}+gamma_{{2}}+gamma_{{3}}
        right) }{beta, left( mu,n-sigma right) }},
        \
        V={frac {alpha,
        beta,mu,n-alpha,beta,sigma-delta,sigma,gamma_{{1}}-
        delta,sigma,gamma_{{2}}-delta,sigma,gamma_{{3}}}{beta,
        sigma, left( gamma_{{1}}+gamma_{{2}}+gamma_{{3}} right) }}
        right}
        $$






        share|cite|improve this answer









        $endgroup$



        Here is how to do it in Maple



        eqs:={alpha-beta*S*V-delta*S,beta*S*V-sigma*II,
        mu*n*II-gamma[1]*V-gamma[2]*V-gamma[3]*V-beta*S*V};
        vars:={S,II,V};
        solve(eqs,vars);



        Note that I is a reserved symbol in Maple, so I just used another symbol II for it.



        Maple yields two solutions
        $$
        left{ {it II}=0,S={frac {alpha}{delta}},V=0 right}
        $$

        and
        $$
        left{ {it II}={frac {alpha,beta,mu,n-alpha,beta,sigma-
        delta,sigma,gamma_{{1}}-delta,sigma,gamma_{{2}}-delta,
        sigma,gamma_{{3}}}{beta,sigma, left( mu,n-sigma right) }},
        S={frac {sigma, left( gamma_{{1}}+gamma_{{2}}+gamma_{{3}}
        right) }{beta, left( mu,n-sigma right) }},
        \
        V={frac {alpha,
        beta,mu,n-alpha,beta,sigma-delta,sigma,gamma_{{1}}-
        delta,sigma,gamma_{{2}}-delta,sigma,gamma_{{3}}}{beta,
        sigma, left( gamma_{{1}}+gamma_{{2}}+gamma_{{3}} right) }}
        right}
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 22 '18 at 13:08









        GEdgarGEdgar

        62.7k267171




        62.7k267171






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049346%2fsolving-system-of-nonlinear-differential-equation-in-maple%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen