Limit of $left{ int_{0}^{1} [bx + a(1 - x) ]^{frac1n} dx right}^n$ as $n to infty$
$begingroup$
Evaluate the limit for $0 < a < b$,
$$lim_{n to infty} left{ int_{0}^{1} [bx + a(1 - x) ]^{frac1n} dx right}^n$$
Just to be clear, the exponent $~1/n~$ is inside the integration on the entire integrand $~a + (b-a)x,~$ and the exponent $n$ is outside on the definite integral.
I actually have been able to solve it as I happen to know a particular way of viewing the logarithm function as a limit
$$log x = lim_{h to 0} frac{x^h - 1}h quad text{, or equivalently} quadlog x = lim_{n to infty} n(x^{frac1n} - 1)$$
That is, my solution is a process that involves terms like $~e^{blog b},~$ where I have to obtain $~log b~$ first as a limit, and I can say that it is $~b^b~$ at the very last step only after another limit.
My question is this: how do I evaluate the limit more directly without this seemingly redundant path of log on the exponent?
In short, I have a solution which I don't like, and I believe there are better ones.
Any ideas? Thank you.
As a reference, below is the detailed steps of my circuitous solution:
The definite integral evaluates to
$$frac1{b - a} frac1{ 1 + frac1n } left[ a + (b-a)x right]^{ 1 + frac1n } Bigg|_{0}^{1} = frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n }$$
Thus the whole expression becomes
$$
begin{align}
&lim_{n to infty} left{ frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n } right}^{n} \
&= frac1e lim_{n to infty} left{ 1 + frac{ b^{1 + frac1n} - a^{1 + frac1n} - (b - a) }{b - a} right}^{n} \
&= frac1e lim_{n to infty} left{ 1 + frac{ n left( b^{1 + frac1n} - b right) - n left(
a^{1 + frac1n} - a right) }{ n (b - a) } right}^{n}
end{align}
$$
all the limits exist so I'm just gonna keep writing in this non-rigorous way
$$
begin{align}
&= frac1e lim_{n to infty} left{ 1 + frac1n frac{ b log b - a log a }{ b - a } right}^{n} \
&= frac1e cdot e^{ frac1{b-a} left( b log b - a log a right)} \
&= frac1e left( frac{ b^b }{ a^a } right)^{ frac1{b-a}}
end{align}$$
calculus limits alternative-proof
$endgroup$
add a comment |
$begingroup$
Evaluate the limit for $0 < a < b$,
$$lim_{n to infty} left{ int_{0}^{1} [bx + a(1 - x) ]^{frac1n} dx right}^n$$
Just to be clear, the exponent $~1/n~$ is inside the integration on the entire integrand $~a + (b-a)x,~$ and the exponent $n$ is outside on the definite integral.
I actually have been able to solve it as I happen to know a particular way of viewing the logarithm function as a limit
$$log x = lim_{h to 0} frac{x^h - 1}h quad text{, or equivalently} quadlog x = lim_{n to infty} n(x^{frac1n} - 1)$$
That is, my solution is a process that involves terms like $~e^{blog b},~$ where I have to obtain $~log b~$ first as a limit, and I can say that it is $~b^b~$ at the very last step only after another limit.
My question is this: how do I evaluate the limit more directly without this seemingly redundant path of log on the exponent?
In short, I have a solution which I don't like, and I believe there are better ones.
Any ideas? Thank you.
As a reference, below is the detailed steps of my circuitous solution:
The definite integral evaluates to
$$frac1{b - a} frac1{ 1 + frac1n } left[ a + (b-a)x right]^{ 1 + frac1n } Bigg|_{0}^{1} = frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n }$$
Thus the whole expression becomes
$$
begin{align}
&lim_{n to infty} left{ frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n } right}^{n} \
&= frac1e lim_{n to infty} left{ 1 + frac{ b^{1 + frac1n} - a^{1 + frac1n} - (b - a) }{b - a} right}^{n} \
&= frac1e lim_{n to infty} left{ 1 + frac{ n left( b^{1 + frac1n} - b right) - n left(
a^{1 + frac1n} - a right) }{ n (b - a) } right}^{n}
end{align}
$$
all the limits exist so I'm just gonna keep writing in this non-rigorous way
$$
begin{align}
&= frac1e lim_{n to infty} left{ 1 + frac1n frac{ b log b - a log a }{ b - a } right}^{n} \
&= frac1e cdot e^{ frac1{b-a} left( b log b - a log a right)} \
&= frac1e left( frac{ b^b }{ a^a } right)^{ frac1{b-a}}
end{align}$$
calculus limits alternative-proof
$endgroup$
add a comment |
$begingroup$
Evaluate the limit for $0 < a < b$,
$$lim_{n to infty} left{ int_{0}^{1} [bx + a(1 - x) ]^{frac1n} dx right}^n$$
Just to be clear, the exponent $~1/n~$ is inside the integration on the entire integrand $~a + (b-a)x,~$ and the exponent $n$ is outside on the definite integral.
I actually have been able to solve it as I happen to know a particular way of viewing the logarithm function as a limit
$$log x = lim_{h to 0} frac{x^h - 1}h quad text{, or equivalently} quadlog x = lim_{n to infty} n(x^{frac1n} - 1)$$
That is, my solution is a process that involves terms like $~e^{blog b},~$ where I have to obtain $~log b~$ first as a limit, and I can say that it is $~b^b~$ at the very last step only after another limit.
My question is this: how do I evaluate the limit more directly without this seemingly redundant path of log on the exponent?
In short, I have a solution which I don't like, and I believe there are better ones.
Any ideas? Thank you.
As a reference, below is the detailed steps of my circuitous solution:
The definite integral evaluates to
$$frac1{b - a} frac1{ 1 + frac1n } left[ a + (b-a)x right]^{ 1 + frac1n } Bigg|_{0}^{1} = frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n }$$
Thus the whole expression becomes
$$
begin{align}
&lim_{n to infty} left{ frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n } right}^{n} \
&= frac1e lim_{n to infty} left{ 1 + frac{ b^{1 + frac1n} - a^{1 + frac1n} - (b - a) }{b - a} right}^{n} \
&= frac1e lim_{n to infty} left{ 1 + frac{ n left( b^{1 + frac1n} - b right) - n left(
a^{1 + frac1n} - a right) }{ n (b - a) } right}^{n}
end{align}
$$
all the limits exist so I'm just gonna keep writing in this non-rigorous way
$$
begin{align}
&= frac1e lim_{n to infty} left{ 1 + frac1n frac{ b log b - a log a }{ b - a } right}^{n} \
&= frac1e cdot e^{ frac1{b-a} left( b log b - a log a right)} \
&= frac1e left( frac{ b^b }{ a^a } right)^{ frac1{b-a}}
end{align}$$
calculus limits alternative-proof
$endgroup$
Evaluate the limit for $0 < a < b$,
$$lim_{n to infty} left{ int_{0}^{1} [bx + a(1 - x) ]^{frac1n} dx right}^n$$
Just to be clear, the exponent $~1/n~$ is inside the integration on the entire integrand $~a + (b-a)x,~$ and the exponent $n$ is outside on the definite integral.
I actually have been able to solve it as I happen to know a particular way of viewing the logarithm function as a limit
$$log x = lim_{h to 0} frac{x^h - 1}h quad text{, or equivalently} quadlog x = lim_{n to infty} n(x^{frac1n} - 1)$$
That is, my solution is a process that involves terms like $~e^{blog b},~$ where I have to obtain $~log b~$ first as a limit, and I can say that it is $~b^b~$ at the very last step only after another limit.
My question is this: how do I evaluate the limit more directly without this seemingly redundant path of log on the exponent?
In short, I have a solution which I don't like, and I believe there are better ones.
Any ideas? Thank you.
As a reference, below is the detailed steps of my circuitous solution:
The definite integral evaluates to
$$frac1{b - a} frac1{ 1 + frac1n } left[ a + (b-a)x right]^{ 1 + frac1n } Bigg|_{0}^{1} = frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n }$$
Thus the whole expression becomes
$$
begin{align}
&lim_{n to infty} left{ frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n } right}^{n} \
&= frac1e lim_{n to infty} left{ 1 + frac{ b^{1 + frac1n} - a^{1 + frac1n} - (b - a) }{b - a} right}^{n} \
&= frac1e lim_{n to infty} left{ 1 + frac{ n left( b^{1 + frac1n} - b right) - n left(
a^{1 + frac1n} - a right) }{ n (b - a) } right}^{n}
end{align}
$$
all the limits exist so I'm just gonna keep writing in this non-rigorous way
$$
begin{align}
&= frac1e lim_{n to infty} left{ 1 + frac1n frac{ b log b - a log a }{ b - a } right}^{n} \
&= frac1e cdot e^{ frac1{b-a} left( b log b - a log a right)} \
&= frac1e left( frac{ b^b }{ a^a } right)^{ frac1{b-a}}
end{align}$$
calculus limits alternative-proof
calculus limits alternative-proof
edited Dec 10 '18 at 17:34
Lee David Chung Lin
asked Oct 19 '16 at 15:01
Lee David Chung LinLee David Chung Lin
4,02031141
4,02031141
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
This is just the continuous analogue of a well-known fact:
If $a_1,a_2,ldots,a_m$ are non-negative numbers and the mean of order $p>0$ is defined as
$$ M_p(a_1,ldots,a_m) = left(frac{1}{m}sum_{k=1}^{m}a_k^pright)^{frac{1}{p}},$$
then $M_p$ is an increasing function of $p$ and
$$ lim_{pto 0^+} M_p(a_1,ldots,a_m)= GM(a_1,ldots,a_m) = left(prod_{k=1}^{m}a_kright)^{frac{1}{m}}$$
by the continuity and concavity of the logarithm function.
In particular, if $f(x)$ is a non-negative and continuous function over the interval $(0,1)$,
$$ lim_{pto 0^+}left(int_{0}^{1}f(x)^p,dxright)^{frac{1}{p}}=expint_{0}^{1}log f(x),dx.$$
The last identity gives that for any $a,b>0$,
$$ begin{eqnarray*}lim_{nto +infty}left(int_{0}^{1}(bx+a(1-x))^{frac{1}{n}},dxright)^n &=& expint_{0}^{1}log(bx+a(1-x)),dx\&=&expleft[frac{1}{b-a}int_{a}^{b}log(x),dxright]\&=&expleft[-1+frac{blog b-alog a}{b-a}right]\&=&color{red}{frac{1}{e}left(frac{b^b}{a^a}right)^{frac{1}{b-a}}} end{eqnarray*}$$
as claimed.
$endgroup$
2
$begingroup$
Putting it in this bigger framework is really great!
$endgroup$
– Lee David Chung Lin
Oct 19 '16 at 16:17
1
$begingroup$
This is honestly one of the coolest things I've ever seen on Math.SE. What a wonderful theorem to know exists, and what a fascinating application. Thank you for sharing!
$endgroup$
– Brevan Ellefsen
Oct 20 '16 at 2:47
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&lim_{n to infty}braces{int_{0}^{1}bracks{bx + apars{1 - x}}^{1/n}
,dd x}^{n} =
lim_{n to infty}bracks{{1 over b - a}int_{a}^{b}x^{1/n}
,dd x}^{n}
\[5mm] &=
lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} + lnpars{int_{a}^{b}x^{epsilon},dd x} over epsilon}
\[5mm] & =
lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} +
lnpars{b^{epsilon + 1} - a^{epsilon + 1}} - lnpars{epsilon + 1} over epsilon}
\[5mm] & =
lim_{epsilon to 0^{+}}exppars{
{b^{epsilon + 1}lnpars{b} - a^{epsilon + 1}lnpars{a} over b^{epsilon + 1} - a^{epsilon + 1}} - {1 over epsilon + 1}}qquadqquad
pars{~L'Hhat{o}pital Rule~}
\[5mm] & =
exppars{{blnpars{b} - alnpars{a} over b - a} - 1} =
bbx{ds{{1 over expo{}},pars{b^{b} over a^{a}}^{1/pars{b - a}}}}
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1975789%2flimit-of-left-int-01-bx-a1-x-frac1n-dx-right-n-as-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This is just the continuous analogue of a well-known fact:
If $a_1,a_2,ldots,a_m$ are non-negative numbers and the mean of order $p>0$ is defined as
$$ M_p(a_1,ldots,a_m) = left(frac{1}{m}sum_{k=1}^{m}a_k^pright)^{frac{1}{p}},$$
then $M_p$ is an increasing function of $p$ and
$$ lim_{pto 0^+} M_p(a_1,ldots,a_m)= GM(a_1,ldots,a_m) = left(prod_{k=1}^{m}a_kright)^{frac{1}{m}}$$
by the continuity and concavity of the logarithm function.
In particular, if $f(x)$ is a non-negative and continuous function over the interval $(0,1)$,
$$ lim_{pto 0^+}left(int_{0}^{1}f(x)^p,dxright)^{frac{1}{p}}=expint_{0}^{1}log f(x),dx.$$
The last identity gives that for any $a,b>0$,
$$ begin{eqnarray*}lim_{nto +infty}left(int_{0}^{1}(bx+a(1-x))^{frac{1}{n}},dxright)^n &=& expint_{0}^{1}log(bx+a(1-x)),dx\&=&expleft[frac{1}{b-a}int_{a}^{b}log(x),dxright]\&=&expleft[-1+frac{blog b-alog a}{b-a}right]\&=&color{red}{frac{1}{e}left(frac{b^b}{a^a}right)^{frac{1}{b-a}}} end{eqnarray*}$$
as claimed.
$endgroup$
2
$begingroup$
Putting it in this bigger framework is really great!
$endgroup$
– Lee David Chung Lin
Oct 19 '16 at 16:17
1
$begingroup$
This is honestly one of the coolest things I've ever seen on Math.SE. What a wonderful theorem to know exists, and what a fascinating application. Thank you for sharing!
$endgroup$
– Brevan Ellefsen
Oct 20 '16 at 2:47
add a comment |
$begingroup$
This is just the continuous analogue of a well-known fact:
If $a_1,a_2,ldots,a_m$ are non-negative numbers and the mean of order $p>0$ is defined as
$$ M_p(a_1,ldots,a_m) = left(frac{1}{m}sum_{k=1}^{m}a_k^pright)^{frac{1}{p}},$$
then $M_p$ is an increasing function of $p$ and
$$ lim_{pto 0^+} M_p(a_1,ldots,a_m)= GM(a_1,ldots,a_m) = left(prod_{k=1}^{m}a_kright)^{frac{1}{m}}$$
by the continuity and concavity of the logarithm function.
In particular, if $f(x)$ is a non-negative and continuous function over the interval $(0,1)$,
$$ lim_{pto 0^+}left(int_{0}^{1}f(x)^p,dxright)^{frac{1}{p}}=expint_{0}^{1}log f(x),dx.$$
The last identity gives that for any $a,b>0$,
$$ begin{eqnarray*}lim_{nto +infty}left(int_{0}^{1}(bx+a(1-x))^{frac{1}{n}},dxright)^n &=& expint_{0}^{1}log(bx+a(1-x)),dx\&=&expleft[frac{1}{b-a}int_{a}^{b}log(x),dxright]\&=&expleft[-1+frac{blog b-alog a}{b-a}right]\&=&color{red}{frac{1}{e}left(frac{b^b}{a^a}right)^{frac{1}{b-a}}} end{eqnarray*}$$
as claimed.
$endgroup$
2
$begingroup$
Putting it in this bigger framework is really great!
$endgroup$
– Lee David Chung Lin
Oct 19 '16 at 16:17
1
$begingroup$
This is honestly one of the coolest things I've ever seen on Math.SE. What a wonderful theorem to know exists, and what a fascinating application. Thank you for sharing!
$endgroup$
– Brevan Ellefsen
Oct 20 '16 at 2:47
add a comment |
$begingroup$
This is just the continuous analogue of a well-known fact:
If $a_1,a_2,ldots,a_m$ are non-negative numbers and the mean of order $p>0$ is defined as
$$ M_p(a_1,ldots,a_m) = left(frac{1}{m}sum_{k=1}^{m}a_k^pright)^{frac{1}{p}},$$
then $M_p$ is an increasing function of $p$ and
$$ lim_{pto 0^+} M_p(a_1,ldots,a_m)= GM(a_1,ldots,a_m) = left(prod_{k=1}^{m}a_kright)^{frac{1}{m}}$$
by the continuity and concavity of the logarithm function.
In particular, if $f(x)$ is a non-negative and continuous function over the interval $(0,1)$,
$$ lim_{pto 0^+}left(int_{0}^{1}f(x)^p,dxright)^{frac{1}{p}}=expint_{0}^{1}log f(x),dx.$$
The last identity gives that for any $a,b>0$,
$$ begin{eqnarray*}lim_{nto +infty}left(int_{0}^{1}(bx+a(1-x))^{frac{1}{n}},dxright)^n &=& expint_{0}^{1}log(bx+a(1-x)),dx\&=&expleft[frac{1}{b-a}int_{a}^{b}log(x),dxright]\&=&expleft[-1+frac{blog b-alog a}{b-a}right]\&=&color{red}{frac{1}{e}left(frac{b^b}{a^a}right)^{frac{1}{b-a}}} end{eqnarray*}$$
as claimed.
$endgroup$
This is just the continuous analogue of a well-known fact:
If $a_1,a_2,ldots,a_m$ are non-negative numbers and the mean of order $p>0$ is defined as
$$ M_p(a_1,ldots,a_m) = left(frac{1}{m}sum_{k=1}^{m}a_k^pright)^{frac{1}{p}},$$
then $M_p$ is an increasing function of $p$ and
$$ lim_{pto 0^+} M_p(a_1,ldots,a_m)= GM(a_1,ldots,a_m) = left(prod_{k=1}^{m}a_kright)^{frac{1}{m}}$$
by the continuity and concavity of the logarithm function.
In particular, if $f(x)$ is a non-negative and continuous function over the interval $(0,1)$,
$$ lim_{pto 0^+}left(int_{0}^{1}f(x)^p,dxright)^{frac{1}{p}}=expint_{0}^{1}log f(x),dx.$$
The last identity gives that for any $a,b>0$,
$$ begin{eqnarray*}lim_{nto +infty}left(int_{0}^{1}(bx+a(1-x))^{frac{1}{n}},dxright)^n &=& expint_{0}^{1}log(bx+a(1-x)),dx\&=&expleft[frac{1}{b-a}int_{a}^{b}log(x),dxright]\&=&expleft[-1+frac{blog b-alog a}{b-a}right]\&=&color{red}{frac{1}{e}left(frac{b^b}{a^a}right)^{frac{1}{b-a}}} end{eqnarray*}$$
as claimed.
answered Oct 19 '16 at 16:08
Jack D'AurizioJack D'Aurizio
1
1
2
$begingroup$
Putting it in this bigger framework is really great!
$endgroup$
– Lee David Chung Lin
Oct 19 '16 at 16:17
1
$begingroup$
This is honestly one of the coolest things I've ever seen on Math.SE. What a wonderful theorem to know exists, and what a fascinating application. Thank you for sharing!
$endgroup$
– Brevan Ellefsen
Oct 20 '16 at 2:47
add a comment |
2
$begingroup$
Putting it in this bigger framework is really great!
$endgroup$
– Lee David Chung Lin
Oct 19 '16 at 16:17
1
$begingroup$
This is honestly one of the coolest things I've ever seen on Math.SE. What a wonderful theorem to know exists, and what a fascinating application. Thank you for sharing!
$endgroup$
– Brevan Ellefsen
Oct 20 '16 at 2:47
2
2
$begingroup$
Putting it in this bigger framework is really great!
$endgroup$
– Lee David Chung Lin
Oct 19 '16 at 16:17
$begingroup$
Putting it in this bigger framework is really great!
$endgroup$
– Lee David Chung Lin
Oct 19 '16 at 16:17
1
1
$begingroup$
This is honestly one of the coolest things I've ever seen on Math.SE. What a wonderful theorem to know exists, and what a fascinating application. Thank you for sharing!
$endgroup$
– Brevan Ellefsen
Oct 20 '16 at 2:47
$begingroup$
This is honestly one of the coolest things I've ever seen on Math.SE. What a wonderful theorem to know exists, and what a fascinating application. Thank you for sharing!
$endgroup$
– Brevan Ellefsen
Oct 20 '16 at 2:47
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&lim_{n to infty}braces{int_{0}^{1}bracks{bx + apars{1 - x}}^{1/n}
,dd x}^{n} =
lim_{n to infty}bracks{{1 over b - a}int_{a}^{b}x^{1/n}
,dd x}^{n}
\[5mm] &=
lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} + lnpars{int_{a}^{b}x^{epsilon},dd x} over epsilon}
\[5mm] & =
lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} +
lnpars{b^{epsilon + 1} - a^{epsilon + 1}} - lnpars{epsilon + 1} over epsilon}
\[5mm] & =
lim_{epsilon to 0^{+}}exppars{
{b^{epsilon + 1}lnpars{b} - a^{epsilon + 1}lnpars{a} over b^{epsilon + 1} - a^{epsilon + 1}} - {1 over epsilon + 1}}qquadqquad
pars{~L'Hhat{o}pital Rule~}
\[5mm] & =
exppars{{blnpars{b} - alnpars{a} over b - a} - 1} =
bbx{ds{{1 over expo{}},pars{b^{b} over a^{a}}^{1/pars{b - a}}}}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&lim_{n to infty}braces{int_{0}^{1}bracks{bx + apars{1 - x}}^{1/n}
,dd x}^{n} =
lim_{n to infty}bracks{{1 over b - a}int_{a}^{b}x^{1/n}
,dd x}^{n}
\[5mm] &=
lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} + lnpars{int_{a}^{b}x^{epsilon},dd x} over epsilon}
\[5mm] & =
lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} +
lnpars{b^{epsilon + 1} - a^{epsilon + 1}} - lnpars{epsilon + 1} over epsilon}
\[5mm] & =
lim_{epsilon to 0^{+}}exppars{
{b^{epsilon + 1}lnpars{b} - a^{epsilon + 1}lnpars{a} over b^{epsilon + 1} - a^{epsilon + 1}} - {1 over epsilon + 1}}qquadqquad
pars{~L'Hhat{o}pital Rule~}
\[5mm] & =
exppars{{blnpars{b} - alnpars{a} over b - a} - 1} =
bbx{ds{{1 over expo{}},pars{b^{b} over a^{a}}^{1/pars{b - a}}}}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&lim_{n to infty}braces{int_{0}^{1}bracks{bx + apars{1 - x}}^{1/n}
,dd x}^{n} =
lim_{n to infty}bracks{{1 over b - a}int_{a}^{b}x^{1/n}
,dd x}^{n}
\[5mm] &=
lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} + lnpars{int_{a}^{b}x^{epsilon},dd x} over epsilon}
\[5mm] & =
lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} +
lnpars{b^{epsilon + 1} - a^{epsilon + 1}} - lnpars{epsilon + 1} over epsilon}
\[5mm] & =
lim_{epsilon to 0^{+}}exppars{
{b^{epsilon + 1}lnpars{b} - a^{epsilon + 1}lnpars{a} over b^{epsilon + 1} - a^{epsilon + 1}} - {1 over epsilon + 1}}qquadqquad
pars{~L'Hhat{o}pital Rule~}
\[5mm] & =
exppars{{blnpars{b} - alnpars{a} over b - a} - 1} =
bbx{ds{{1 over expo{}},pars{b^{b} over a^{a}}^{1/pars{b - a}}}}
end{align}
$endgroup$
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&lim_{n to infty}braces{int_{0}^{1}bracks{bx + apars{1 - x}}^{1/n}
,dd x}^{n} =
lim_{n to infty}bracks{{1 over b - a}int_{a}^{b}x^{1/n}
,dd x}^{n}
\[5mm] &=
lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} + lnpars{int_{a}^{b}x^{epsilon},dd x} over epsilon}
\[5mm] & =
lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} +
lnpars{b^{epsilon + 1} - a^{epsilon + 1}} - lnpars{epsilon + 1} over epsilon}
\[5mm] & =
lim_{epsilon to 0^{+}}exppars{
{b^{epsilon + 1}lnpars{b} - a^{epsilon + 1}lnpars{a} over b^{epsilon + 1} - a^{epsilon + 1}} - {1 over epsilon + 1}}qquadqquad
pars{~L'Hhat{o}pital Rule~}
\[5mm] & =
exppars{{blnpars{b} - alnpars{a} over b - a} - 1} =
bbx{ds{{1 over expo{}},pars{b^{b} over a^{a}}^{1/pars{b - a}}}}
end{align}
answered Oct 19 '16 at 22:58
Felix MarinFelix Marin
67.8k7107142
67.8k7107142
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1975789%2flimit-of-left-int-01-bx-a1-x-frac1n-dx-right-n-as-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown