Sum of Symmetric Positive Definite Matrix and Scalar of Identity












1












$begingroup$


If $A$ is an $ntimes n$ symmetric positive definite matrix with the smallest eigenvalue $lambda$, then for any $mu>-lambda$, $A+mu I$ is positive definite.



I am trying to show this, but I am stuck on one part. Here is what I have so far:
$$
begin{align*}
langle x,left(A+mu Iright)xrangle&=langle x,Ax+mu xrangle\
&=langle x,Axrangle+langle x,mu xrangle\
&>0+mulangle x,xrangle\
&>-lambdalangle x,xrangle.
end{align*}
$$



I'm stuck on showing that $mulangle x,xrangle$ is positive because I only know that $mu>-lambda$. Any help would be appreciated.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    $langle Ax,xrangle ge lambdalangle x,xrangle$ by the assumptions on $A$.
    $endgroup$
    – DisintegratingByParts
    Dec 10 '18 at 18:22
















1












$begingroup$


If $A$ is an $ntimes n$ symmetric positive definite matrix with the smallest eigenvalue $lambda$, then for any $mu>-lambda$, $A+mu I$ is positive definite.



I am trying to show this, but I am stuck on one part. Here is what I have so far:
$$
begin{align*}
langle x,left(A+mu Iright)xrangle&=langle x,Ax+mu xrangle\
&=langle x,Axrangle+langle x,mu xrangle\
&>0+mulangle x,xrangle\
&>-lambdalangle x,xrangle.
end{align*}
$$



I'm stuck on showing that $mulangle x,xrangle$ is positive because I only know that $mu>-lambda$. Any help would be appreciated.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    $langle Ax,xrangle ge lambdalangle x,xrangle$ by the assumptions on $A$.
    $endgroup$
    – DisintegratingByParts
    Dec 10 '18 at 18:22














1












1








1


1



$begingroup$


If $A$ is an $ntimes n$ symmetric positive definite matrix with the smallest eigenvalue $lambda$, then for any $mu>-lambda$, $A+mu I$ is positive definite.



I am trying to show this, but I am stuck on one part. Here is what I have so far:
$$
begin{align*}
langle x,left(A+mu Iright)xrangle&=langle x,Ax+mu xrangle\
&=langle x,Axrangle+langle x,mu xrangle\
&>0+mulangle x,xrangle\
&>-lambdalangle x,xrangle.
end{align*}
$$



I'm stuck on showing that $mulangle x,xrangle$ is positive because I only know that $mu>-lambda$. Any help would be appreciated.










share|cite|improve this question









$endgroup$




If $A$ is an $ntimes n$ symmetric positive definite matrix with the smallest eigenvalue $lambda$, then for any $mu>-lambda$, $A+mu I$ is positive definite.



I am trying to show this, but I am stuck on one part. Here is what I have so far:
$$
begin{align*}
langle x,left(A+mu Iright)xrangle&=langle x,Ax+mu xrangle\
&=langle x,Axrangle+langle x,mu xrangle\
&>0+mulangle x,xrangle\
&>-lambdalangle x,xrangle.
end{align*}
$$



I'm stuck on showing that $mulangle x,xrangle$ is positive because I only know that $mu>-lambda$. Any help would be appreciated.







linear-algebra matrices eigenvalues-eigenvectors positive-definite






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 10 '18 at 18:18









JakeJake

415312




415312








  • 2




    $begingroup$
    $langle Ax,xrangle ge lambdalangle x,xrangle$ by the assumptions on $A$.
    $endgroup$
    – DisintegratingByParts
    Dec 10 '18 at 18:22














  • 2




    $begingroup$
    $langle Ax,xrangle ge lambdalangle x,xrangle$ by the assumptions on $A$.
    $endgroup$
    – DisintegratingByParts
    Dec 10 '18 at 18:22








2




2




$begingroup$
$langle Ax,xrangle ge lambdalangle x,xrangle$ by the assumptions on $A$.
$endgroup$
– DisintegratingByParts
Dec 10 '18 at 18:22




$begingroup$
$langle Ax,xrangle ge lambdalangle x,xrangle$ by the assumptions on $A$.
$endgroup$
– DisintegratingByParts
Dec 10 '18 at 18:22










1 Answer
1






active

oldest

votes


















1












$begingroup$

If $A$ is a positive definite symmetric matrix with smallest eigenvalue $lambda$, then for all vectors $x$ we have



$langle x, Ax rangle ge lambda langle x, x rangle; tag 1$



the easiest way I know to see this is to diagonalize $A$ by a suitable orthogonal matrix $O$, which will preserve the inner product:



$langle Oy, Ox rangle = langle y, O^TOx rangle = langle y, Ix rangle = langle y, x rangle, tag 2$



where we have used the fact that



$O^TO = OO^T = I tag 3$



in (2); then we have



$OAO^T = Lambda = text{diag}(lambda_1, lambda_2, ldots, lambda_n), tag 3$



where $lambda_1, lambda_2, ldots, lambda_n$ are the eigenvalues of $A$. It is well-known that $A$ is also possessed of an orthonormal eigenbasis of vectors $e_i$ such that



$A e_i = lambda_i e_i, ; 1 le i le n; tag 4$



we may then write



$x = displaystyle sum_1^n x_i e_i, tag 5$



and



$langle x, Ax rangle = left langle displaystyle sum_1^n x_ie_i, sum_1^n x_i Ae_i right rangle = left langle displaystyle sum_1^n x_ie_i, sum_1^n x_i lambda_i e_i right rangle = displaystyle sum_{i, j = 1}^n x_ix_j langle e_i, lambda_j e_j rangle$
$= displaystyle sum_{i, j = 1}^n x_ix_j lambda_j langle e_i,e_j rangle = sum_{i, j = 1}^n x_ix_j lambda_j delta_{ij} = sum_1^n lambda_i x_i^2; tag 6$



now if



$lambda = min {lambda_1, lambda_2, ldots, lambda_n } > 0 tag 7$



is the least eigenvalue, then (6) yields



$langle x, Ax rangle = displaystyle sum_1^n lambda_i x_i^2 ge sum_1^n lambda x_i^2 = lambda sum_1^n x_i^2 = lambda langle x, x rangle; tag 8$



therefore,



$langle x, (A + mu I)x rangle = langle x, Ax rangle + mu langle x, x rangle ge lambda langle x, x rangle + mu langle x, x rangle = (lambda + mu) langle x, x rangle; tag 9$



since



$mu > - lambda Longleftrightarrow mu + lambda > 0, tag{10}$



(9) becomes



$langle x, (A + mu I)x rangle ge (mu + lambda ) langle x, x rangle > 0, tag{11}$



which shows that $A + mu I$ is positive definite, the desired result. $OEDelta$.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034283%2fsum-of-symmetric-positive-definite-matrix-and-scalar-of-identity%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    If $A$ is a positive definite symmetric matrix with smallest eigenvalue $lambda$, then for all vectors $x$ we have



    $langle x, Ax rangle ge lambda langle x, x rangle; tag 1$



    the easiest way I know to see this is to diagonalize $A$ by a suitable orthogonal matrix $O$, which will preserve the inner product:



    $langle Oy, Ox rangle = langle y, O^TOx rangle = langle y, Ix rangle = langle y, x rangle, tag 2$



    where we have used the fact that



    $O^TO = OO^T = I tag 3$



    in (2); then we have



    $OAO^T = Lambda = text{diag}(lambda_1, lambda_2, ldots, lambda_n), tag 3$



    where $lambda_1, lambda_2, ldots, lambda_n$ are the eigenvalues of $A$. It is well-known that $A$ is also possessed of an orthonormal eigenbasis of vectors $e_i$ such that



    $A e_i = lambda_i e_i, ; 1 le i le n; tag 4$



    we may then write



    $x = displaystyle sum_1^n x_i e_i, tag 5$



    and



    $langle x, Ax rangle = left langle displaystyle sum_1^n x_ie_i, sum_1^n x_i Ae_i right rangle = left langle displaystyle sum_1^n x_ie_i, sum_1^n x_i lambda_i e_i right rangle = displaystyle sum_{i, j = 1}^n x_ix_j langle e_i, lambda_j e_j rangle$
    $= displaystyle sum_{i, j = 1}^n x_ix_j lambda_j langle e_i,e_j rangle = sum_{i, j = 1}^n x_ix_j lambda_j delta_{ij} = sum_1^n lambda_i x_i^2; tag 6$



    now if



    $lambda = min {lambda_1, lambda_2, ldots, lambda_n } > 0 tag 7$



    is the least eigenvalue, then (6) yields



    $langle x, Ax rangle = displaystyle sum_1^n lambda_i x_i^2 ge sum_1^n lambda x_i^2 = lambda sum_1^n x_i^2 = lambda langle x, x rangle; tag 8$



    therefore,



    $langle x, (A + mu I)x rangle = langle x, Ax rangle + mu langle x, x rangle ge lambda langle x, x rangle + mu langle x, x rangle = (lambda + mu) langle x, x rangle; tag 9$



    since



    $mu > - lambda Longleftrightarrow mu + lambda > 0, tag{10}$



    (9) becomes



    $langle x, (A + mu I)x rangle ge (mu + lambda ) langle x, x rangle > 0, tag{11}$



    which shows that $A + mu I$ is positive definite, the desired result. $OEDelta$.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      If $A$ is a positive definite symmetric matrix with smallest eigenvalue $lambda$, then for all vectors $x$ we have



      $langle x, Ax rangle ge lambda langle x, x rangle; tag 1$



      the easiest way I know to see this is to diagonalize $A$ by a suitable orthogonal matrix $O$, which will preserve the inner product:



      $langle Oy, Ox rangle = langle y, O^TOx rangle = langle y, Ix rangle = langle y, x rangle, tag 2$



      where we have used the fact that



      $O^TO = OO^T = I tag 3$



      in (2); then we have



      $OAO^T = Lambda = text{diag}(lambda_1, lambda_2, ldots, lambda_n), tag 3$



      where $lambda_1, lambda_2, ldots, lambda_n$ are the eigenvalues of $A$. It is well-known that $A$ is also possessed of an orthonormal eigenbasis of vectors $e_i$ such that



      $A e_i = lambda_i e_i, ; 1 le i le n; tag 4$



      we may then write



      $x = displaystyle sum_1^n x_i e_i, tag 5$



      and



      $langle x, Ax rangle = left langle displaystyle sum_1^n x_ie_i, sum_1^n x_i Ae_i right rangle = left langle displaystyle sum_1^n x_ie_i, sum_1^n x_i lambda_i e_i right rangle = displaystyle sum_{i, j = 1}^n x_ix_j langle e_i, lambda_j e_j rangle$
      $= displaystyle sum_{i, j = 1}^n x_ix_j lambda_j langle e_i,e_j rangle = sum_{i, j = 1}^n x_ix_j lambda_j delta_{ij} = sum_1^n lambda_i x_i^2; tag 6$



      now if



      $lambda = min {lambda_1, lambda_2, ldots, lambda_n } > 0 tag 7$



      is the least eigenvalue, then (6) yields



      $langle x, Ax rangle = displaystyle sum_1^n lambda_i x_i^2 ge sum_1^n lambda x_i^2 = lambda sum_1^n x_i^2 = lambda langle x, x rangle; tag 8$



      therefore,



      $langle x, (A + mu I)x rangle = langle x, Ax rangle + mu langle x, x rangle ge lambda langle x, x rangle + mu langle x, x rangle = (lambda + mu) langle x, x rangle; tag 9$



      since



      $mu > - lambda Longleftrightarrow mu + lambda > 0, tag{10}$



      (9) becomes



      $langle x, (A + mu I)x rangle ge (mu + lambda ) langle x, x rangle > 0, tag{11}$



      which shows that $A + mu I$ is positive definite, the desired result. $OEDelta$.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        If $A$ is a positive definite symmetric matrix with smallest eigenvalue $lambda$, then for all vectors $x$ we have



        $langle x, Ax rangle ge lambda langle x, x rangle; tag 1$



        the easiest way I know to see this is to diagonalize $A$ by a suitable orthogonal matrix $O$, which will preserve the inner product:



        $langle Oy, Ox rangle = langle y, O^TOx rangle = langle y, Ix rangle = langle y, x rangle, tag 2$



        where we have used the fact that



        $O^TO = OO^T = I tag 3$



        in (2); then we have



        $OAO^T = Lambda = text{diag}(lambda_1, lambda_2, ldots, lambda_n), tag 3$



        where $lambda_1, lambda_2, ldots, lambda_n$ are the eigenvalues of $A$. It is well-known that $A$ is also possessed of an orthonormal eigenbasis of vectors $e_i$ such that



        $A e_i = lambda_i e_i, ; 1 le i le n; tag 4$



        we may then write



        $x = displaystyle sum_1^n x_i e_i, tag 5$



        and



        $langle x, Ax rangle = left langle displaystyle sum_1^n x_ie_i, sum_1^n x_i Ae_i right rangle = left langle displaystyle sum_1^n x_ie_i, sum_1^n x_i lambda_i e_i right rangle = displaystyle sum_{i, j = 1}^n x_ix_j langle e_i, lambda_j e_j rangle$
        $= displaystyle sum_{i, j = 1}^n x_ix_j lambda_j langle e_i,e_j rangle = sum_{i, j = 1}^n x_ix_j lambda_j delta_{ij} = sum_1^n lambda_i x_i^2; tag 6$



        now if



        $lambda = min {lambda_1, lambda_2, ldots, lambda_n } > 0 tag 7$



        is the least eigenvalue, then (6) yields



        $langle x, Ax rangle = displaystyle sum_1^n lambda_i x_i^2 ge sum_1^n lambda x_i^2 = lambda sum_1^n x_i^2 = lambda langle x, x rangle; tag 8$



        therefore,



        $langle x, (A + mu I)x rangle = langle x, Ax rangle + mu langle x, x rangle ge lambda langle x, x rangle + mu langle x, x rangle = (lambda + mu) langle x, x rangle; tag 9$



        since



        $mu > - lambda Longleftrightarrow mu + lambda > 0, tag{10}$



        (9) becomes



        $langle x, (A + mu I)x rangle ge (mu + lambda ) langle x, x rangle > 0, tag{11}$



        which shows that $A + mu I$ is positive definite, the desired result. $OEDelta$.






        share|cite|improve this answer











        $endgroup$



        If $A$ is a positive definite symmetric matrix with smallest eigenvalue $lambda$, then for all vectors $x$ we have



        $langle x, Ax rangle ge lambda langle x, x rangle; tag 1$



        the easiest way I know to see this is to diagonalize $A$ by a suitable orthogonal matrix $O$, which will preserve the inner product:



        $langle Oy, Ox rangle = langle y, O^TOx rangle = langle y, Ix rangle = langle y, x rangle, tag 2$



        where we have used the fact that



        $O^TO = OO^T = I tag 3$



        in (2); then we have



        $OAO^T = Lambda = text{diag}(lambda_1, lambda_2, ldots, lambda_n), tag 3$



        where $lambda_1, lambda_2, ldots, lambda_n$ are the eigenvalues of $A$. It is well-known that $A$ is also possessed of an orthonormal eigenbasis of vectors $e_i$ such that



        $A e_i = lambda_i e_i, ; 1 le i le n; tag 4$



        we may then write



        $x = displaystyle sum_1^n x_i e_i, tag 5$



        and



        $langle x, Ax rangle = left langle displaystyle sum_1^n x_ie_i, sum_1^n x_i Ae_i right rangle = left langle displaystyle sum_1^n x_ie_i, sum_1^n x_i lambda_i e_i right rangle = displaystyle sum_{i, j = 1}^n x_ix_j langle e_i, lambda_j e_j rangle$
        $= displaystyle sum_{i, j = 1}^n x_ix_j lambda_j langle e_i,e_j rangle = sum_{i, j = 1}^n x_ix_j lambda_j delta_{ij} = sum_1^n lambda_i x_i^2; tag 6$



        now if



        $lambda = min {lambda_1, lambda_2, ldots, lambda_n } > 0 tag 7$



        is the least eigenvalue, then (6) yields



        $langle x, Ax rangle = displaystyle sum_1^n lambda_i x_i^2 ge sum_1^n lambda x_i^2 = lambda sum_1^n x_i^2 = lambda langle x, x rangle; tag 8$



        therefore,



        $langle x, (A + mu I)x rangle = langle x, Ax rangle + mu langle x, x rangle ge lambda langle x, x rangle + mu langle x, x rangle = (lambda + mu) langle x, x rangle; tag 9$



        since



        $mu > - lambda Longleftrightarrow mu + lambda > 0, tag{10}$



        (9) becomes



        $langle x, (A + mu I)x rangle ge (mu + lambda ) langle x, x rangle > 0, tag{11}$



        which shows that $A + mu I$ is positive definite, the desired result. $OEDelta$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 10 '18 at 19:37

























        answered Dec 10 '18 at 19:16









        Robert LewisRobert Lewis

        45.6k23065




        45.6k23065






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034283%2fsum-of-symmetric-positive-definite-matrix-and-scalar-of-identity%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen