How to increase curvature using tikz












5















I was trying to replicate an image of a book, but I don't know how to increase the curvature on the curves. I've been done this so far:



documentclass[tikz, border=2pt]{standalone}
usepackage[utf8]{inputenc}
usepackage[brazilian]{babel}
usepackage{amssymb}
usepackage{tikz,tkz-euclide}
usetkzobj{all}
usepackage{xcolor}
usetikzlibrary{decorations.markings}

begin{document}
begin{tikzpicture}[scale=3, mydot/.style={fill, circle, inner
sep=1.5pt}, decoration={markings, mark=at position 0.5 with
{arrow{latex}}}]

draw[thick] (0,0) to[out=5,in=175, looseness=.8] (5,0);
draw[thick] (0,0) to[out=-10,in=190, looseness=1.4] (5,0);
draw[ultra thick] (0,0) to[out=-15,in=195, looseness=1.5] (5,0);
draw[thick] (0,0) to[out=-25,in=205, looseness=1.6] (5,0);
draw[thick] (0,0) to[out=-35,in=215, looseness=1.6] (5,0);
draw[thick] (0,0) to[out=-45,in=225, looseness=1.7] (5,0);

draw[thick] (1,-2) .. controls (2.3,-.567) and (2.5,.3) .. (2.3,1);

draw[ultra thick,-latex,shorten >= 5pt] (2.3,-.567) to[out=45,in=45,
looseness=0] (2.8,.8);
draw[ultra thick,-latex,shorten >= 5pt] (5.7,.7) to[out=190,in=80,
looseness=.8] (5,0);
draw[ultra thick,-latex,shorten >= 5pt] (5,-1) to[out=120,in=1,
looseness=.7] (4,-.3);
draw[ultra thick,-latex,shorten >= 5pt] (4,-2) to[out=120,in=1,
looseness=.7] (3.1,-1.6);

node[mydot] at (0,0) {};
node[mydot] at (5,0) {};

node at (.9,-2.1) {{Large $X_p$}};
node at (2.9,.85) {{Large $xi(p)$}};
node at (5.85,.8) {{Large $partial M$}};
node at (5.3,-1.1) {{Large $X_0=x$}};
node at (4.1,-2.1) {{Large $X_t$}};
end{tikzpicture}
end{document}


The picture I want to replicate is that one bellow:



enter image description here










share|improve this question



























    5















    I was trying to replicate an image of a book, but I don't know how to increase the curvature on the curves. I've been done this so far:



    documentclass[tikz, border=2pt]{standalone}
    usepackage[utf8]{inputenc}
    usepackage[brazilian]{babel}
    usepackage{amssymb}
    usepackage{tikz,tkz-euclide}
    usetkzobj{all}
    usepackage{xcolor}
    usetikzlibrary{decorations.markings}

    begin{document}
    begin{tikzpicture}[scale=3, mydot/.style={fill, circle, inner
    sep=1.5pt}, decoration={markings, mark=at position 0.5 with
    {arrow{latex}}}]

    draw[thick] (0,0) to[out=5,in=175, looseness=.8] (5,0);
    draw[thick] (0,0) to[out=-10,in=190, looseness=1.4] (5,0);
    draw[ultra thick] (0,0) to[out=-15,in=195, looseness=1.5] (5,0);
    draw[thick] (0,0) to[out=-25,in=205, looseness=1.6] (5,0);
    draw[thick] (0,0) to[out=-35,in=215, looseness=1.6] (5,0);
    draw[thick] (0,0) to[out=-45,in=225, looseness=1.7] (5,0);

    draw[thick] (1,-2) .. controls (2.3,-.567) and (2.5,.3) .. (2.3,1);

    draw[ultra thick,-latex,shorten >= 5pt] (2.3,-.567) to[out=45,in=45,
    looseness=0] (2.8,.8);
    draw[ultra thick,-latex,shorten >= 5pt] (5.7,.7) to[out=190,in=80,
    looseness=.8] (5,0);
    draw[ultra thick,-latex,shorten >= 5pt] (5,-1) to[out=120,in=1,
    looseness=.7] (4,-.3);
    draw[ultra thick,-latex,shorten >= 5pt] (4,-2) to[out=120,in=1,
    looseness=.7] (3.1,-1.6);

    node[mydot] at (0,0) {};
    node[mydot] at (5,0) {};

    node at (.9,-2.1) {{Large $X_p$}};
    node at (2.9,.85) {{Large $xi(p)$}};
    node at (5.85,.8) {{Large $partial M$}};
    node at (5.3,-1.1) {{Large $X_0=x$}};
    node at (4.1,-2.1) {{Large $X_t$}};
    end{tikzpicture}
    end{document}


    The picture I want to replicate is that one bellow:



    enter image description here










    share|improve this question

























      5












      5








      5








      I was trying to replicate an image of a book, but I don't know how to increase the curvature on the curves. I've been done this so far:



      documentclass[tikz, border=2pt]{standalone}
      usepackage[utf8]{inputenc}
      usepackage[brazilian]{babel}
      usepackage{amssymb}
      usepackage{tikz,tkz-euclide}
      usetkzobj{all}
      usepackage{xcolor}
      usetikzlibrary{decorations.markings}

      begin{document}
      begin{tikzpicture}[scale=3, mydot/.style={fill, circle, inner
      sep=1.5pt}, decoration={markings, mark=at position 0.5 with
      {arrow{latex}}}]

      draw[thick] (0,0) to[out=5,in=175, looseness=.8] (5,0);
      draw[thick] (0,0) to[out=-10,in=190, looseness=1.4] (5,0);
      draw[ultra thick] (0,0) to[out=-15,in=195, looseness=1.5] (5,0);
      draw[thick] (0,0) to[out=-25,in=205, looseness=1.6] (5,0);
      draw[thick] (0,0) to[out=-35,in=215, looseness=1.6] (5,0);
      draw[thick] (0,0) to[out=-45,in=225, looseness=1.7] (5,0);

      draw[thick] (1,-2) .. controls (2.3,-.567) and (2.5,.3) .. (2.3,1);

      draw[ultra thick,-latex,shorten >= 5pt] (2.3,-.567) to[out=45,in=45,
      looseness=0] (2.8,.8);
      draw[ultra thick,-latex,shorten >= 5pt] (5.7,.7) to[out=190,in=80,
      looseness=.8] (5,0);
      draw[ultra thick,-latex,shorten >= 5pt] (5,-1) to[out=120,in=1,
      looseness=.7] (4,-.3);
      draw[ultra thick,-latex,shorten >= 5pt] (4,-2) to[out=120,in=1,
      looseness=.7] (3.1,-1.6);

      node[mydot] at (0,0) {};
      node[mydot] at (5,0) {};

      node at (.9,-2.1) {{Large $X_p$}};
      node at (2.9,.85) {{Large $xi(p)$}};
      node at (5.85,.8) {{Large $partial M$}};
      node at (5.3,-1.1) {{Large $X_0=x$}};
      node at (4.1,-2.1) {{Large $X_t$}};
      end{tikzpicture}
      end{document}


      The picture I want to replicate is that one bellow:



      enter image description here










      share|improve this question














      I was trying to replicate an image of a book, but I don't know how to increase the curvature on the curves. I've been done this so far:



      documentclass[tikz, border=2pt]{standalone}
      usepackage[utf8]{inputenc}
      usepackage[brazilian]{babel}
      usepackage{amssymb}
      usepackage{tikz,tkz-euclide}
      usetkzobj{all}
      usepackage{xcolor}
      usetikzlibrary{decorations.markings}

      begin{document}
      begin{tikzpicture}[scale=3, mydot/.style={fill, circle, inner
      sep=1.5pt}, decoration={markings, mark=at position 0.5 with
      {arrow{latex}}}]

      draw[thick] (0,0) to[out=5,in=175, looseness=.8] (5,0);
      draw[thick] (0,0) to[out=-10,in=190, looseness=1.4] (5,0);
      draw[ultra thick] (0,0) to[out=-15,in=195, looseness=1.5] (5,0);
      draw[thick] (0,0) to[out=-25,in=205, looseness=1.6] (5,0);
      draw[thick] (0,0) to[out=-35,in=215, looseness=1.6] (5,0);
      draw[thick] (0,0) to[out=-45,in=225, looseness=1.7] (5,0);

      draw[thick] (1,-2) .. controls (2.3,-.567) and (2.5,.3) .. (2.3,1);

      draw[ultra thick,-latex,shorten >= 5pt] (2.3,-.567) to[out=45,in=45,
      looseness=0] (2.8,.8);
      draw[ultra thick,-latex,shorten >= 5pt] (5.7,.7) to[out=190,in=80,
      looseness=.8] (5,0);
      draw[ultra thick,-latex,shorten >= 5pt] (5,-1) to[out=120,in=1,
      looseness=.7] (4,-.3);
      draw[ultra thick,-latex,shorten >= 5pt] (4,-2) to[out=120,in=1,
      looseness=.7] (3.1,-1.6);

      node[mydot] at (0,0) {};
      node[mydot] at (5,0) {};

      node at (.9,-2.1) {{Large $X_p$}};
      node at (2.9,.85) {{Large $xi(p)$}};
      node at (5.85,.8) {{Large $partial M$}};
      node at (5.3,-1.1) {{Large $X_0=x$}};
      node at (4.1,-2.1) {{Large $X_t$}};
      end{tikzpicture}
      end{document}


      The picture I want to replicate is that one bellow:



      enter image description here







      tikz-pgf nodes






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Dec 15 '18 at 0:58









      IrlexiIrlexi

      865




      865






















          3 Answers
          3






          active

          oldest

          votes


















          3














          Using proper coordinates and plot command, smooth curves as shown in question can be reproduced. The format to use plot is:



          draw[smooth] plot coordinates{<list of coordinates>};


          A minimal working example:



          documentclass[border=3mm]{standalone}
          usepackage{tikz}

          begin{document}
          begin{tikzpicture}
          fill (0,0) circle (2pt);
          fill (5,0) circle (2pt);
          draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,0.0) (1.8,0.2) (3.2,0.2) (4.3,0.0) (5,0)};
          draw[thick,smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.1) (1.8,-0.4) (3.2,-0.4) (4.3,-0.1) (5,0)};
          draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.11) (1.8,-0.6) (3.2,-0.6) (4.3,-0.11) (5,0)};
          draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.12) (1.8,-0.7) (3.2,-0.7) (4.3,-0.12) (5,0)};
          end{tikzpicture}
          end{document}


          Output:
          enter image description here






          share|improve this answer































            4














            Arguably, something like bend right might be better suited to produce some surface with constant mean curvature, but I am not claiming that this necessarily a closer reproduction of your screen shot. The main purpose of this answer is, however, to advertize relative positioning for the nodes and arrows.



            documentclass[tikz, border=2pt]{standalone}
            usepackage[utf8]{inputenc}
            usepackage[brazilian]{babel}
            usepackage{amssymb}
            usepackage{tikz,tkz-euclide}
            usetkzobj{all}
            usepackage{xcolor}
            usetikzlibrary{decorations.markings}

            begin{document}
            begin{tikzpicture}[scale=3, mydot/.style={fill, circle, inner
            sep=1.5pt}, decoration={markings, mark=at position 0.5 with
            {arrow{latex}}},font=Large]

            foreach X in {-5,5,25,35,45}
            {draw[thick] (0,0) to[bend right=X] coordinate[pos=0.8] (auxX) (5,0);}
            draw[ultra thick] (0,0) to[bend right=15] coordinate[pos=0.4] (aux1)
            coordinate[pos=0.7] (aux2) (5,0);

            draw[thick] (1,-2) node[below]{$X_p$} .. controls (2.3,-.567) and (2.5,.3) .. (2.3,1);


            draw[ultra thick,latex-] (aux1) -- ++(2,2) node[above]{
            $xi(p)$};
            draw[ultra thick,latex-] (aux2) to[bend right] ++ (1.2,-1.2) node[right]{$X_0=x$};
            draw[ultra thick,latex-] (aux35) to[bend right] ++ (1.2,-0.6)
            node[right]{$X_t$};

            node[mydot] (L) at (0,0) {};
            node[mydot] (R) at (5,0) {};
            draw[ultra thick,latex-] (R) to[bend left] ++ (1,0.5)
            node[right]{$partial M$};

            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer































              4














              Just for the pleasure of using the Béziers curves.



              I first printed the image of your book, having previously taken care to remove its greyish background.
              Then, I measured some distances to position some points and some angles to place the tangents of the Béziers curves.



              courbes



              It is easier to place these tangents when using relative coordinates (see page 140-141 of manual 3.0.1a).



              I composed these curves with an intermediate point placed in the middle by varying the ordinate in a foreach loop.
              I placed an invisible node named (an) at each 0.2 of the second half of each path.



              foreach y [count=n]in {.1,-.1,-.75,-.9,-1.14}{
              draw [thin](0,0)
              .. controls +(0:1) and +(180:1.5) .. (2.5,y) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.2](an){};
              }


              I drew Xo separately so I could thicken his line.



              draw [ultra thick,name path=Xo](0,0)
              .. controls +(0:1) and +(180:1.5) .. (2.5,-.5) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.4](a){};


              To place the tangent, I calculated the intersection named ksi of the curve Xo and Xpand I still used the relative coordinates to draw this tangent.



              % tangent
              path[name intersections={of=Xp and Xo,by=ksi}];
              draw[ultra thick,-Triangle,shorten >= 5pt] (ksi)--+(70:1) node[above ]{$xi(p)$};


              The result and the complete code:



              capture



              documentclass[tikz, border=5mm]{standalone}
              usepackage[utf8]{inputenc}
              usepackage[brazilian]{babel}
              usepackage{amssymb}
              usepackage{tikz,tkz-euclide}
              usetkzobj{all}
              usepackage{xcolor}
              usetikzlibrary{shapes.geometric,intersections,arrows.meta}

              begin{document}
              begin{tikzpicture}[scale=3, mydot/.style={fill, circle, inner
              sep=1.5pt},
              every node/.style={font=Large},
              >={Latex[length=3mm]},
              ]
              node[mydot] at (0,0) {};
              node[mydot] at (5,0) (end){};

              foreach y [count=n]in {.1,-.1,-.75,-.9,-1.14}{
              draw [thin](0,0)
              .. controls +(0:1) and +(180:1.5) .. (2.5,y) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.2](an){};
              }

              draw [ultra thick,name path=Xo](0,0)
              .. controls +(0:1) and +(180:1.5) .. (2.5,-.5) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.4](a){};

              draw[<-,shorten <=5pt] (a)to[bend left]+(1,-.5)node[right]{ $X_0=x$};
              draw[thick,name path=Xp] (.8,-1.6)node[below]{ $X_p$}
              .. controls +(50:1) and +(-110:.5) ..
              (2.1,-.5)
              ..controls +(70:.5) and +(-110:1.2)..(2.3,1);

              % tangent
              path[name intersections={of=Xp and Xo,by=ksi}];
              draw[ultra thick,-Triangle,shorten >= 5pt] (ksi)--+(70:1) node[above ]{$xi(p)$};
              % nodes
              draw[thick,<-,shorten >= 5pt] (end) to[bend left] +(.5,.5)node[right]{$partial(M)$};
              draw[<-] (a5)to[bend left]+(.5,-.5)node[right]{$X_t$};
              end{tikzpicture}
              end{document}


              Translated with www.DeepL.com/Translator






              share|improve this answer





















              • 1





                Thank you for the reference in the Tantau manual. This is a more artistically and well designed plot!

                – Irlexi
                Dec 15 '18 at 12:13











              Your Answer








              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "85"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f464918%2fhow-to-increase-curvature-using-tikz%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3














              Using proper coordinates and plot command, smooth curves as shown in question can be reproduced. The format to use plot is:



              draw[smooth] plot coordinates{<list of coordinates>};


              A minimal working example:



              documentclass[border=3mm]{standalone}
              usepackage{tikz}

              begin{document}
              begin{tikzpicture}
              fill (0,0) circle (2pt);
              fill (5,0) circle (2pt);
              draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,0.0) (1.8,0.2) (3.2,0.2) (4.3,0.0) (5,0)};
              draw[thick,smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.1) (1.8,-0.4) (3.2,-0.4) (4.3,-0.1) (5,0)};
              draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.11) (1.8,-0.6) (3.2,-0.6) (4.3,-0.11) (5,0)};
              draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.12) (1.8,-0.7) (3.2,-0.7) (4.3,-0.12) (5,0)};
              end{tikzpicture}
              end{document}


              Output:
              enter image description here






              share|improve this answer




























                3














                Using proper coordinates and plot command, smooth curves as shown in question can be reproduced. The format to use plot is:



                draw[smooth] plot coordinates{<list of coordinates>};


                A minimal working example:



                documentclass[border=3mm]{standalone}
                usepackage{tikz}

                begin{document}
                begin{tikzpicture}
                fill (0,0) circle (2pt);
                fill (5,0) circle (2pt);
                draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,0.0) (1.8,0.2) (3.2,0.2) (4.3,0.0) (5,0)};
                draw[thick,smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.1) (1.8,-0.4) (3.2,-0.4) (4.3,-0.1) (5,0)};
                draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.11) (1.8,-0.6) (3.2,-0.6) (4.3,-0.11) (5,0)};
                draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.12) (1.8,-0.7) (3.2,-0.7) (4.3,-0.12) (5,0)};
                end{tikzpicture}
                end{document}


                Output:
                enter image description here






                share|improve this answer


























                  3












                  3








                  3







                  Using proper coordinates and plot command, smooth curves as shown in question can be reproduced. The format to use plot is:



                  draw[smooth] plot coordinates{<list of coordinates>};


                  A minimal working example:



                  documentclass[border=3mm]{standalone}
                  usepackage{tikz}

                  begin{document}
                  begin{tikzpicture}
                  fill (0,0) circle (2pt);
                  fill (5,0) circle (2pt);
                  draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,0.0) (1.8,0.2) (3.2,0.2) (4.3,0.0) (5,0)};
                  draw[thick,smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.1) (1.8,-0.4) (3.2,-0.4) (4.3,-0.1) (5,0)};
                  draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.11) (1.8,-0.6) (3.2,-0.6) (4.3,-0.11) (5,0)};
                  draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.12) (1.8,-0.7) (3.2,-0.7) (4.3,-0.12) (5,0)};
                  end{tikzpicture}
                  end{document}


                  Output:
                  enter image description here






                  share|improve this answer













                  Using proper coordinates and plot command, smooth curves as shown in question can be reproduced. The format to use plot is:



                  draw[smooth] plot coordinates{<list of coordinates>};


                  A minimal working example:



                  documentclass[border=3mm]{standalone}
                  usepackage{tikz}

                  begin{document}
                  begin{tikzpicture}
                  fill (0,0) circle (2pt);
                  fill (5,0) circle (2pt);
                  draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,0.0) (1.8,0.2) (3.2,0.2) (4.3,0.0) (5,0)};
                  draw[thick,smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.1) (1.8,-0.4) (3.2,-0.4) (4.3,-0.1) (5,0)};
                  draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.11) (1.8,-0.6) (3.2,-0.6) (4.3,-0.11) (5,0)};
                  draw[smooth,tension=0.7] plot coordinates{(0,0) (0.7,-0.12) (1.8,-0.7) (3.2,-0.7) (4.3,-0.12) (5,0)};
                  end{tikzpicture}
                  end{document}


                  Output:
                  enter image description here







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Dec 15 '18 at 5:48









                  nidhinnidhin

                  3,3521927




                  3,3521927























                      4














                      Arguably, something like bend right might be better suited to produce some surface with constant mean curvature, but I am not claiming that this necessarily a closer reproduction of your screen shot. The main purpose of this answer is, however, to advertize relative positioning for the nodes and arrows.



                      documentclass[tikz, border=2pt]{standalone}
                      usepackage[utf8]{inputenc}
                      usepackage[brazilian]{babel}
                      usepackage{amssymb}
                      usepackage{tikz,tkz-euclide}
                      usetkzobj{all}
                      usepackage{xcolor}
                      usetikzlibrary{decorations.markings}

                      begin{document}
                      begin{tikzpicture}[scale=3, mydot/.style={fill, circle, inner
                      sep=1.5pt}, decoration={markings, mark=at position 0.5 with
                      {arrow{latex}}},font=Large]

                      foreach X in {-5,5,25,35,45}
                      {draw[thick] (0,0) to[bend right=X] coordinate[pos=0.8] (auxX) (5,0);}
                      draw[ultra thick] (0,0) to[bend right=15] coordinate[pos=0.4] (aux1)
                      coordinate[pos=0.7] (aux2) (5,0);

                      draw[thick] (1,-2) node[below]{$X_p$} .. controls (2.3,-.567) and (2.5,.3) .. (2.3,1);


                      draw[ultra thick,latex-] (aux1) -- ++(2,2) node[above]{
                      $xi(p)$};
                      draw[ultra thick,latex-] (aux2) to[bend right] ++ (1.2,-1.2) node[right]{$X_0=x$};
                      draw[ultra thick,latex-] (aux35) to[bend right] ++ (1.2,-0.6)
                      node[right]{$X_t$};

                      node[mydot] (L) at (0,0) {};
                      node[mydot] (R) at (5,0) {};
                      draw[ultra thick,latex-] (R) to[bend left] ++ (1,0.5)
                      node[right]{$partial M$};

                      end{tikzpicture}
                      end{document}


                      enter image description here






                      share|improve this answer




























                        4














                        Arguably, something like bend right might be better suited to produce some surface with constant mean curvature, but I am not claiming that this necessarily a closer reproduction of your screen shot. The main purpose of this answer is, however, to advertize relative positioning for the nodes and arrows.



                        documentclass[tikz, border=2pt]{standalone}
                        usepackage[utf8]{inputenc}
                        usepackage[brazilian]{babel}
                        usepackage{amssymb}
                        usepackage{tikz,tkz-euclide}
                        usetkzobj{all}
                        usepackage{xcolor}
                        usetikzlibrary{decorations.markings}

                        begin{document}
                        begin{tikzpicture}[scale=3, mydot/.style={fill, circle, inner
                        sep=1.5pt}, decoration={markings, mark=at position 0.5 with
                        {arrow{latex}}},font=Large]

                        foreach X in {-5,5,25,35,45}
                        {draw[thick] (0,0) to[bend right=X] coordinate[pos=0.8] (auxX) (5,0);}
                        draw[ultra thick] (0,0) to[bend right=15] coordinate[pos=0.4] (aux1)
                        coordinate[pos=0.7] (aux2) (5,0);

                        draw[thick] (1,-2) node[below]{$X_p$} .. controls (2.3,-.567) and (2.5,.3) .. (2.3,1);


                        draw[ultra thick,latex-] (aux1) -- ++(2,2) node[above]{
                        $xi(p)$};
                        draw[ultra thick,latex-] (aux2) to[bend right] ++ (1.2,-1.2) node[right]{$X_0=x$};
                        draw[ultra thick,latex-] (aux35) to[bend right] ++ (1.2,-0.6)
                        node[right]{$X_t$};

                        node[mydot] (L) at (0,0) {};
                        node[mydot] (R) at (5,0) {};
                        draw[ultra thick,latex-] (R) to[bend left] ++ (1,0.5)
                        node[right]{$partial M$};

                        end{tikzpicture}
                        end{document}


                        enter image description here






                        share|improve this answer


























                          4












                          4








                          4







                          Arguably, something like bend right might be better suited to produce some surface with constant mean curvature, but I am not claiming that this necessarily a closer reproduction of your screen shot. The main purpose of this answer is, however, to advertize relative positioning for the nodes and arrows.



                          documentclass[tikz, border=2pt]{standalone}
                          usepackage[utf8]{inputenc}
                          usepackage[brazilian]{babel}
                          usepackage{amssymb}
                          usepackage{tikz,tkz-euclide}
                          usetkzobj{all}
                          usepackage{xcolor}
                          usetikzlibrary{decorations.markings}

                          begin{document}
                          begin{tikzpicture}[scale=3, mydot/.style={fill, circle, inner
                          sep=1.5pt}, decoration={markings, mark=at position 0.5 with
                          {arrow{latex}}},font=Large]

                          foreach X in {-5,5,25,35,45}
                          {draw[thick] (0,0) to[bend right=X] coordinate[pos=0.8] (auxX) (5,0);}
                          draw[ultra thick] (0,0) to[bend right=15] coordinate[pos=0.4] (aux1)
                          coordinate[pos=0.7] (aux2) (5,0);

                          draw[thick] (1,-2) node[below]{$X_p$} .. controls (2.3,-.567) and (2.5,.3) .. (2.3,1);


                          draw[ultra thick,latex-] (aux1) -- ++(2,2) node[above]{
                          $xi(p)$};
                          draw[ultra thick,latex-] (aux2) to[bend right] ++ (1.2,-1.2) node[right]{$X_0=x$};
                          draw[ultra thick,latex-] (aux35) to[bend right] ++ (1.2,-0.6)
                          node[right]{$X_t$};

                          node[mydot] (L) at (0,0) {};
                          node[mydot] (R) at (5,0) {};
                          draw[ultra thick,latex-] (R) to[bend left] ++ (1,0.5)
                          node[right]{$partial M$};

                          end{tikzpicture}
                          end{document}


                          enter image description here






                          share|improve this answer













                          Arguably, something like bend right might be better suited to produce some surface with constant mean curvature, but I am not claiming that this necessarily a closer reproduction of your screen shot. The main purpose of this answer is, however, to advertize relative positioning for the nodes and arrows.



                          documentclass[tikz, border=2pt]{standalone}
                          usepackage[utf8]{inputenc}
                          usepackage[brazilian]{babel}
                          usepackage{amssymb}
                          usepackage{tikz,tkz-euclide}
                          usetkzobj{all}
                          usepackage{xcolor}
                          usetikzlibrary{decorations.markings}

                          begin{document}
                          begin{tikzpicture}[scale=3, mydot/.style={fill, circle, inner
                          sep=1.5pt}, decoration={markings, mark=at position 0.5 with
                          {arrow{latex}}},font=Large]

                          foreach X in {-5,5,25,35,45}
                          {draw[thick] (0,0) to[bend right=X] coordinate[pos=0.8] (auxX) (5,0);}
                          draw[ultra thick] (0,0) to[bend right=15] coordinate[pos=0.4] (aux1)
                          coordinate[pos=0.7] (aux2) (5,0);

                          draw[thick] (1,-2) node[below]{$X_p$} .. controls (2.3,-.567) and (2.5,.3) .. (2.3,1);


                          draw[ultra thick,latex-] (aux1) -- ++(2,2) node[above]{
                          $xi(p)$};
                          draw[ultra thick,latex-] (aux2) to[bend right] ++ (1.2,-1.2) node[right]{$X_0=x$};
                          draw[ultra thick,latex-] (aux35) to[bend right] ++ (1.2,-0.6)
                          node[right]{$X_t$};

                          node[mydot] (L) at (0,0) {};
                          node[mydot] (R) at (5,0) {};
                          draw[ultra thick,latex-] (R) to[bend left] ++ (1,0.5)
                          node[right]{$partial M$};

                          end{tikzpicture}
                          end{document}


                          enter image description here







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered Dec 15 '18 at 2:32









                          marmotmarmot

                          99.5k4115220




                          99.5k4115220























                              4














                              Just for the pleasure of using the Béziers curves.



                              I first printed the image of your book, having previously taken care to remove its greyish background.
                              Then, I measured some distances to position some points and some angles to place the tangents of the Béziers curves.



                              courbes



                              It is easier to place these tangents when using relative coordinates (see page 140-141 of manual 3.0.1a).



                              I composed these curves with an intermediate point placed in the middle by varying the ordinate in a foreach loop.
                              I placed an invisible node named (an) at each 0.2 of the second half of each path.



                              foreach y [count=n]in {.1,-.1,-.75,-.9,-1.14}{
                              draw [thin](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,y) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.2](an){};
                              }


                              I drew Xo separately so I could thicken his line.



                              draw [ultra thick,name path=Xo](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,-.5) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.4](a){};


                              To place the tangent, I calculated the intersection named ksi of the curve Xo and Xpand I still used the relative coordinates to draw this tangent.



                              % tangent
                              path[name intersections={of=Xp and Xo,by=ksi}];
                              draw[ultra thick,-Triangle,shorten >= 5pt] (ksi)--+(70:1) node[above ]{$xi(p)$};


                              The result and the complete code:



                              capture



                              documentclass[tikz, border=5mm]{standalone}
                              usepackage[utf8]{inputenc}
                              usepackage[brazilian]{babel}
                              usepackage{amssymb}
                              usepackage{tikz,tkz-euclide}
                              usetkzobj{all}
                              usepackage{xcolor}
                              usetikzlibrary{shapes.geometric,intersections,arrows.meta}

                              begin{document}
                              begin{tikzpicture}[scale=3, mydot/.style={fill, circle, inner
                              sep=1.5pt},
                              every node/.style={font=Large},
                              >={Latex[length=3mm]},
                              ]
                              node[mydot] at (0,0) {};
                              node[mydot] at (5,0) (end){};

                              foreach y [count=n]in {.1,-.1,-.75,-.9,-1.14}{
                              draw [thin](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,y) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.2](an){};
                              }

                              draw [ultra thick,name path=Xo](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,-.5) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.4](a){};

                              draw[<-,shorten <=5pt] (a)to[bend left]+(1,-.5)node[right]{ $X_0=x$};
                              draw[thick,name path=Xp] (.8,-1.6)node[below]{ $X_p$}
                              .. controls +(50:1) and +(-110:.5) ..
                              (2.1,-.5)
                              ..controls +(70:.5) and +(-110:1.2)..(2.3,1);

                              % tangent
                              path[name intersections={of=Xp and Xo,by=ksi}];
                              draw[ultra thick,-Triangle,shorten >= 5pt] (ksi)--+(70:1) node[above ]{$xi(p)$};
                              % nodes
                              draw[thick,<-,shorten >= 5pt] (end) to[bend left] +(.5,.5)node[right]{$partial(M)$};
                              draw[<-] (a5)to[bend left]+(.5,-.5)node[right]{$X_t$};
                              end{tikzpicture}
                              end{document}


                              Translated with www.DeepL.com/Translator






                              share|improve this answer





















                              • 1





                                Thank you for the reference in the Tantau manual. This is a more artistically and well designed plot!

                                – Irlexi
                                Dec 15 '18 at 12:13
















                              4














                              Just for the pleasure of using the Béziers curves.



                              I first printed the image of your book, having previously taken care to remove its greyish background.
                              Then, I measured some distances to position some points and some angles to place the tangents of the Béziers curves.



                              courbes



                              It is easier to place these tangents when using relative coordinates (see page 140-141 of manual 3.0.1a).



                              I composed these curves with an intermediate point placed in the middle by varying the ordinate in a foreach loop.
                              I placed an invisible node named (an) at each 0.2 of the second half of each path.



                              foreach y [count=n]in {.1,-.1,-.75,-.9,-1.14}{
                              draw [thin](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,y) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.2](an){};
                              }


                              I drew Xo separately so I could thicken his line.



                              draw [ultra thick,name path=Xo](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,-.5) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.4](a){};


                              To place the tangent, I calculated the intersection named ksi of the curve Xo and Xpand I still used the relative coordinates to draw this tangent.



                              % tangent
                              path[name intersections={of=Xp and Xo,by=ksi}];
                              draw[ultra thick,-Triangle,shorten >= 5pt] (ksi)--+(70:1) node[above ]{$xi(p)$};


                              The result and the complete code:



                              capture



                              documentclass[tikz, border=5mm]{standalone}
                              usepackage[utf8]{inputenc}
                              usepackage[brazilian]{babel}
                              usepackage{amssymb}
                              usepackage{tikz,tkz-euclide}
                              usetkzobj{all}
                              usepackage{xcolor}
                              usetikzlibrary{shapes.geometric,intersections,arrows.meta}

                              begin{document}
                              begin{tikzpicture}[scale=3, mydot/.style={fill, circle, inner
                              sep=1.5pt},
                              every node/.style={font=Large},
                              >={Latex[length=3mm]},
                              ]
                              node[mydot] at (0,0) {};
                              node[mydot] at (5,0) (end){};

                              foreach y [count=n]in {.1,-.1,-.75,-.9,-1.14}{
                              draw [thin](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,y) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.2](an){};
                              }

                              draw [ultra thick,name path=Xo](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,-.5) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.4](a){};

                              draw[<-,shorten <=5pt] (a)to[bend left]+(1,-.5)node[right]{ $X_0=x$};
                              draw[thick,name path=Xp] (.8,-1.6)node[below]{ $X_p$}
                              .. controls +(50:1) and +(-110:.5) ..
                              (2.1,-.5)
                              ..controls +(70:.5) and +(-110:1.2)..(2.3,1);

                              % tangent
                              path[name intersections={of=Xp and Xo,by=ksi}];
                              draw[ultra thick,-Triangle,shorten >= 5pt] (ksi)--+(70:1) node[above ]{$xi(p)$};
                              % nodes
                              draw[thick,<-,shorten >= 5pt] (end) to[bend left] +(.5,.5)node[right]{$partial(M)$};
                              draw[<-] (a5)to[bend left]+(.5,-.5)node[right]{$X_t$};
                              end{tikzpicture}
                              end{document}


                              Translated with www.DeepL.com/Translator






                              share|improve this answer





















                              • 1





                                Thank you for the reference in the Tantau manual. This is a more artistically and well designed plot!

                                – Irlexi
                                Dec 15 '18 at 12:13














                              4












                              4








                              4







                              Just for the pleasure of using the Béziers curves.



                              I first printed the image of your book, having previously taken care to remove its greyish background.
                              Then, I measured some distances to position some points and some angles to place the tangents of the Béziers curves.



                              courbes



                              It is easier to place these tangents when using relative coordinates (see page 140-141 of manual 3.0.1a).



                              I composed these curves with an intermediate point placed in the middle by varying the ordinate in a foreach loop.
                              I placed an invisible node named (an) at each 0.2 of the second half of each path.



                              foreach y [count=n]in {.1,-.1,-.75,-.9,-1.14}{
                              draw [thin](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,y) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.2](an){};
                              }


                              I drew Xo separately so I could thicken his line.



                              draw [ultra thick,name path=Xo](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,-.5) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.4](a){};


                              To place the tangent, I calculated the intersection named ksi of the curve Xo and Xpand I still used the relative coordinates to draw this tangent.



                              % tangent
                              path[name intersections={of=Xp and Xo,by=ksi}];
                              draw[ultra thick,-Triangle,shorten >= 5pt] (ksi)--+(70:1) node[above ]{$xi(p)$};


                              The result and the complete code:



                              capture



                              documentclass[tikz, border=5mm]{standalone}
                              usepackage[utf8]{inputenc}
                              usepackage[brazilian]{babel}
                              usepackage{amssymb}
                              usepackage{tikz,tkz-euclide}
                              usetkzobj{all}
                              usepackage{xcolor}
                              usetikzlibrary{shapes.geometric,intersections,arrows.meta}

                              begin{document}
                              begin{tikzpicture}[scale=3, mydot/.style={fill, circle, inner
                              sep=1.5pt},
                              every node/.style={font=Large},
                              >={Latex[length=3mm]},
                              ]
                              node[mydot] at (0,0) {};
                              node[mydot] at (5,0) (end){};

                              foreach y [count=n]in {.1,-.1,-.75,-.9,-1.14}{
                              draw [thin](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,y) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.2](an){};
                              }

                              draw [ultra thick,name path=Xo](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,-.5) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.4](a){};

                              draw[<-,shorten <=5pt] (a)to[bend left]+(1,-.5)node[right]{ $X_0=x$};
                              draw[thick,name path=Xp] (.8,-1.6)node[below]{ $X_p$}
                              .. controls +(50:1) and +(-110:.5) ..
                              (2.1,-.5)
                              ..controls +(70:.5) and +(-110:1.2)..(2.3,1);

                              % tangent
                              path[name intersections={of=Xp and Xo,by=ksi}];
                              draw[ultra thick,-Triangle,shorten >= 5pt] (ksi)--+(70:1) node[above ]{$xi(p)$};
                              % nodes
                              draw[thick,<-,shorten >= 5pt] (end) to[bend left] +(.5,.5)node[right]{$partial(M)$};
                              draw[<-] (a5)to[bend left]+(.5,-.5)node[right]{$X_t$};
                              end{tikzpicture}
                              end{document}


                              Translated with www.DeepL.com/Translator






                              share|improve this answer















                              Just for the pleasure of using the Béziers curves.



                              I first printed the image of your book, having previously taken care to remove its greyish background.
                              Then, I measured some distances to position some points and some angles to place the tangents of the Béziers curves.



                              courbes



                              It is easier to place these tangents when using relative coordinates (see page 140-141 of manual 3.0.1a).



                              I composed these curves with an intermediate point placed in the middle by varying the ordinate in a foreach loop.
                              I placed an invisible node named (an) at each 0.2 of the second half of each path.



                              foreach y [count=n]in {.1,-.1,-.75,-.9,-1.14}{
                              draw [thin](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,y) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.2](an){};
                              }


                              I drew Xo separately so I could thicken his line.



                              draw [ultra thick,name path=Xo](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,-.5) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.4](a){};


                              To place the tangent, I calculated the intersection named ksi of the curve Xo and Xpand I still used the relative coordinates to draw this tangent.



                              % tangent
                              path[name intersections={of=Xp and Xo,by=ksi}];
                              draw[ultra thick,-Triangle,shorten >= 5pt] (ksi)--+(70:1) node[above ]{$xi(p)$};


                              The result and the complete code:



                              capture



                              documentclass[tikz, border=5mm]{standalone}
                              usepackage[utf8]{inputenc}
                              usepackage[brazilian]{babel}
                              usepackage{amssymb}
                              usepackage{tikz,tkz-euclide}
                              usetkzobj{all}
                              usepackage{xcolor}
                              usetikzlibrary{shapes.geometric,intersections,arrows.meta}

                              begin{document}
                              begin{tikzpicture}[scale=3, mydot/.style={fill, circle, inner
                              sep=1.5pt},
                              every node/.style={font=Large},
                              >={Latex[length=3mm]},
                              ]
                              node[mydot] at (0,0) {};
                              node[mydot] at (5,0) (end){};

                              foreach y [count=n]in {.1,-.1,-.75,-.9,-1.14}{
                              draw [thin](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,y) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.2](an){};
                              }

                              draw [ultra thick,name path=Xo](0,0)
                              .. controls +(0:1) and +(180:1.5) .. (2.5,-.5) ..controls +(0:1.5) and +(180:1) .. (5,0)node[pos=.4](a){};

                              draw[<-,shorten <=5pt] (a)to[bend left]+(1,-.5)node[right]{ $X_0=x$};
                              draw[thick,name path=Xp] (.8,-1.6)node[below]{ $X_p$}
                              .. controls +(50:1) and +(-110:.5) ..
                              (2.1,-.5)
                              ..controls +(70:.5) and +(-110:1.2)..(2.3,1);

                              % tangent
                              path[name intersections={of=Xp and Xo,by=ksi}];
                              draw[ultra thick,-Triangle,shorten >= 5pt] (ksi)--+(70:1) node[above ]{$xi(p)$};
                              % nodes
                              draw[thick,<-,shorten >= 5pt] (end) to[bend left] +(.5,.5)node[right]{$partial(M)$};
                              draw[<-] (a5)to[bend left]+(.5,-.5)node[right]{$X_t$};
                              end{tikzpicture}
                              end{document}


                              Translated with www.DeepL.com/Translator







                              share|improve this answer














                              share|improve this answer



                              share|improve this answer








                              edited Dec 15 '18 at 8:59

























                              answered Dec 15 '18 at 8:51









                              AndréCAndréC

                              9,01411447




                              9,01411447








                              • 1





                                Thank you for the reference in the Tantau manual. This is a more artistically and well designed plot!

                                – Irlexi
                                Dec 15 '18 at 12:13














                              • 1





                                Thank you for the reference in the Tantau manual. This is a more artistically and well designed plot!

                                – Irlexi
                                Dec 15 '18 at 12:13








                              1




                              1





                              Thank you for the reference in the Tantau manual. This is a more artistically and well designed plot!

                              – Irlexi
                              Dec 15 '18 at 12:13





                              Thank you for the reference in the Tantau manual. This is a more artistically and well designed plot!

                              – Irlexi
                              Dec 15 '18 at 12:13


















                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f464918%2fhow-to-increase-curvature-using-tikz%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Wiesbaden

                              Marschland

                              Dieringhausen