Is $0$ a cluster point of the set ${0}$?
$begingroup$
I just read the theorem
A subset of R is closed if and only if it contains all of its cluster points.
And I found that the set {0} is closed (Is that correct?), then the set {0} should contains all its cluster points, right? But I just checked the definition of cluster point in the textbook (it appears at the beginning of the limit of function) and found that 0 is not the cluster point of the set {0}
I want to know where the false is ?
real-analysis real-numbers
$endgroup$
|
show 1 more comment
$begingroup$
I just read the theorem
A subset of R is closed if and only if it contains all of its cluster points.
And I found that the set {0} is closed (Is that correct?), then the set {0} should contains all its cluster points, right? But I just checked the definition of cluster point in the textbook (it appears at the beginning of the limit of function) and found that 0 is not the cluster point of the set {0}
I want to know where the false is ?
real-analysis real-numbers
$endgroup$
$begingroup$
Do you think that the set is not closed? If yes then can you give a cluster point which is not in the set? The definition says that A set is closed iff it contains all its cluster point. If 0 is not the cluster point then why do you even worry about it?
$endgroup$
– Rakesh Bhatt
Dec 15 '18 at 6:51
$begingroup$
I got it ! I just thought 0 "should" be a cluster point of the set .Then the set does not have a cluster point, right? Thank you. But wait a minute, the set {0} contains the element 0 !
$endgroup$
– Yang Gao
Dec 15 '18 at 7:06
3
$begingroup$
Post the definition of "cluster point" in your book.
$endgroup$
– xbh
Dec 15 '18 at 7:12
$begingroup$
I think it appears at the answer provided by Anthony Ter .
$endgroup$
– Yang Gao
Dec 15 '18 at 7:19
$begingroup$
@YangGao The set {0} contains the element 0! Yes, It contains. So what?
$endgroup$
– Rakesh Bhatt
Dec 15 '18 at 9:21
|
show 1 more comment
$begingroup$
I just read the theorem
A subset of R is closed if and only if it contains all of its cluster points.
And I found that the set {0} is closed (Is that correct?), then the set {0} should contains all its cluster points, right? But I just checked the definition of cluster point in the textbook (it appears at the beginning of the limit of function) and found that 0 is not the cluster point of the set {0}
I want to know where the false is ?
real-analysis real-numbers
$endgroup$
I just read the theorem
A subset of R is closed if and only if it contains all of its cluster points.
And I found that the set {0} is closed (Is that correct?), then the set {0} should contains all its cluster points, right? But I just checked the definition of cluster point in the textbook (it appears at the beginning of the limit of function) and found that 0 is not the cluster point of the set {0}
I want to know where the false is ?
real-analysis real-numbers
real-analysis real-numbers
edited Dec 15 '18 at 7:13
anomaly
17.6k42665
17.6k42665
asked Dec 15 '18 at 6:48
Yang GaoYang Gao
161
161
$begingroup$
Do you think that the set is not closed? If yes then can you give a cluster point which is not in the set? The definition says that A set is closed iff it contains all its cluster point. If 0 is not the cluster point then why do you even worry about it?
$endgroup$
– Rakesh Bhatt
Dec 15 '18 at 6:51
$begingroup$
I got it ! I just thought 0 "should" be a cluster point of the set .Then the set does not have a cluster point, right? Thank you. But wait a minute, the set {0} contains the element 0 !
$endgroup$
– Yang Gao
Dec 15 '18 at 7:06
3
$begingroup$
Post the definition of "cluster point" in your book.
$endgroup$
– xbh
Dec 15 '18 at 7:12
$begingroup$
I think it appears at the answer provided by Anthony Ter .
$endgroup$
– Yang Gao
Dec 15 '18 at 7:19
$begingroup$
@YangGao The set {0} contains the element 0! Yes, It contains. So what?
$endgroup$
– Rakesh Bhatt
Dec 15 '18 at 9:21
|
show 1 more comment
$begingroup$
Do you think that the set is not closed? If yes then can you give a cluster point which is not in the set? The definition says that A set is closed iff it contains all its cluster point. If 0 is not the cluster point then why do you even worry about it?
$endgroup$
– Rakesh Bhatt
Dec 15 '18 at 6:51
$begingroup$
I got it ! I just thought 0 "should" be a cluster point of the set .Then the set does not have a cluster point, right? Thank you. But wait a minute, the set {0} contains the element 0 !
$endgroup$
– Yang Gao
Dec 15 '18 at 7:06
3
$begingroup$
Post the definition of "cluster point" in your book.
$endgroup$
– xbh
Dec 15 '18 at 7:12
$begingroup$
I think it appears at the answer provided by Anthony Ter .
$endgroup$
– Yang Gao
Dec 15 '18 at 7:19
$begingroup$
@YangGao The set {0} contains the element 0! Yes, It contains. So what?
$endgroup$
– Rakesh Bhatt
Dec 15 '18 at 9:21
$begingroup$
Do you think that the set is not closed? If yes then can you give a cluster point which is not in the set? The definition says that A set is closed iff it contains all its cluster point. If 0 is not the cluster point then why do you even worry about it?
$endgroup$
– Rakesh Bhatt
Dec 15 '18 at 6:51
$begingroup$
Do you think that the set is not closed? If yes then can you give a cluster point which is not in the set? The definition says that A set is closed iff it contains all its cluster point. If 0 is not the cluster point then why do you even worry about it?
$endgroup$
– Rakesh Bhatt
Dec 15 '18 at 6:51
$begingroup$
I got it ! I just thought 0 "should" be a cluster point of the set .Then the set does not have a cluster point, right? Thank you. But wait a minute, the set {0} contains the element 0 !
$endgroup$
– Yang Gao
Dec 15 '18 at 7:06
$begingroup$
I got it ! I just thought 0 "should" be a cluster point of the set .Then the set does not have a cluster point, right? Thank you. But wait a minute, the set {0} contains the element 0 !
$endgroup$
– Yang Gao
Dec 15 '18 at 7:06
3
3
$begingroup$
Post the definition of "cluster point" in your book.
$endgroup$
– xbh
Dec 15 '18 at 7:12
$begingroup$
Post the definition of "cluster point" in your book.
$endgroup$
– xbh
Dec 15 '18 at 7:12
$begingroup$
I think it appears at the answer provided by Anthony Ter .
$endgroup$
– Yang Gao
Dec 15 '18 at 7:19
$begingroup$
I think it appears at the answer provided by Anthony Ter .
$endgroup$
– Yang Gao
Dec 15 '18 at 7:19
$begingroup$
@YangGao The set {0} contains the element 0! Yes, It contains. So what?
$endgroup$
– Rakesh Bhatt
Dec 15 '18 at 9:21
$begingroup$
@YangGao The set {0} contains the element 0! Yes, It contains. So what?
$endgroup$
– Rakesh Bhatt
Dec 15 '18 at 9:21
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
If $0$ was a cluster point of ${0}$ then for every $delta > 0$ there would exist an $x neq 0, x in N_delta(0)$ such that $x in {0}$. clearly no such $x$ exists, for any $delta$. Thus $0$ is not a cluster point of ${0}$.
So is ${0 }$ closed? Does it contain all of its limit points? Well, $emptyset subseteq {0}$, so ${0}$ is closed.
$endgroup$
$begingroup$
Thanks. Now I really get it . The closed set contains all of its cluster point but not all of its elements! Thank you!
$endgroup$
– Yang Gao
Dec 15 '18 at 7:17
$begingroup$
Now the empty set is the only cluster point of the set, right? Just a little "weird".
$endgroup$
– Yang Gao
Dec 15 '18 at 7:25
1
$begingroup$
No,the empty set isn't a point. The empty set represents the set of limit points, and I was trying to show that that set is contained in ${0}$. I should have used $subseteq$, not $in$. I'll edit it now.
$endgroup$
– Anthony Ter
Dec 15 '18 at 7:27
1
$begingroup$
So the set does not have a cluster point ? wow
$endgroup$
– Yang Gao
Dec 15 '18 at 7:31
$begingroup$
Yep, in fact, no finite subset of $mathbb{R}$ has a cluster point.
$endgroup$
– Anthony Ter
Dec 15 '18 at 7:35
|
show 3 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040240%2fis-0-a-cluster-point-of-the-set-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $0$ was a cluster point of ${0}$ then for every $delta > 0$ there would exist an $x neq 0, x in N_delta(0)$ such that $x in {0}$. clearly no such $x$ exists, for any $delta$. Thus $0$ is not a cluster point of ${0}$.
So is ${0 }$ closed? Does it contain all of its limit points? Well, $emptyset subseteq {0}$, so ${0}$ is closed.
$endgroup$
$begingroup$
Thanks. Now I really get it . The closed set contains all of its cluster point but not all of its elements! Thank you!
$endgroup$
– Yang Gao
Dec 15 '18 at 7:17
$begingroup$
Now the empty set is the only cluster point of the set, right? Just a little "weird".
$endgroup$
– Yang Gao
Dec 15 '18 at 7:25
1
$begingroup$
No,the empty set isn't a point. The empty set represents the set of limit points, and I was trying to show that that set is contained in ${0}$. I should have used $subseteq$, not $in$. I'll edit it now.
$endgroup$
– Anthony Ter
Dec 15 '18 at 7:27
1
$begingroup$
So the set does not have a cluster point ? wow
$endgroup$
– Yang Gao
Dec 15 '18 at 7:31
$begingroup$
Yep, in fact, no finite subset of $mathbb{R}$ has a cluster point.
$endgroup$
– Anthony Ter
Dec 15 '18 at 7:35
|
show 3 more comments
$begingroup$
If $0$ was a cluster point of ${0}$ then for every $delta > 0$ there would exist an $x neq 0, x in N_delta(0)$ such that $x in {0}$. clearly no such $x$ exists, for any $delta$. Thus $0$ is not a cluster point of ${0}$.
So is ${0 }$ closed? Does it contain all of its limit points? Well, $emptyset subseteq {0}$, so ${0}$ is closed.
$endgroup$
$begingroup$
Thanks. Now I really get it . The closed set contains all of its cluster point but not all of its elements! Thank you!
$endgroup$
– Yang Gao
Dec 15 '18 at 7:17
$begingroup$
Now the empty set is the only cluster point of the set, right? Just a little "weird".
$endgroup$
– Yang Gao
Dec 15 '18 at 7:25
1
$begingroup$
No,the empty set isn't a point. The empty set represents the set of limit points, and I was trying to show that that set is contained in ${0}$. I should have used $subseteq$, not $in$. I'll edit it now.
$endgroup$
– Anthony Ter
Dec 15 '18 at 7:27
1
$begingroup$
So the set does not have a cluster point ? wow
$endgroup$
– Yang Gao
Dec 15 '18 at 7:31
$begingroup$
Yep, in fact, no finite subset of $mathbb{R}$ has a cluster point.
$endgroup$
– Anthony Ter
Dec 15 '18 at 7:35
|
show 3 more comments
$begingroup$
If $0$ was a cluster point of ${0}$ then for every $delta > 0$ there would exist an $x neq 0, x in N_delta(0)$ such that $x in {0}$. clearly no such $x$ exists, for any $delta$. Thus $0$ is not a cluster point of ${0}$.
So is ${0 }$ closed? Does it contain all of its limit points? Well, $emptyset subseteq {0}$, so ${0}$ is closed.
$endgroup$
If $0$ was a cluster point of ${0}$ then for every $delta > 0$ there would exist an $x neq 0, x in N_delta(0)$ such that $x in {0}$. clearly no such $x$ exists, for any $delta$. Thus $0$ is not a cluster point of ${0}$.
So is ${0 }$ closed? Does it contain all of its limit points? Well, $emptyset subseteq {0}$, so ${0}$ is closed.
edited Dec 15 '18 at 7:28
answered Dec 15 '18 at 7:04
Anthony TerAnthony Ter
35116
35116
$begingroup$
Thanks. Now I really get it . The closed set contains all of its cluster point but not all of its elements! Thank you!
$endgroup$
– Yang Gao
Dec 15 '18 at 7:17
$begingroup$
Now the empty set is the only cluster point of the set, right? Just a little "weird".
$endgroup$
– Yang Gao
Dec 15 '18 at 7:25
1
$begingroup$
No,the empty set isn't a point. The empty set represents the set of limit points, and I was trying to show that that set is contained in ${0}$. I should have used $subseteq$, not $in$. I'll edit it now.
$endgroup$
– Anthony Ter
Dec 15 '18 at 7:27
1
$begingroup$
So the set does not have a cluster point ? wow
$endgroup$
– Yang Gao
Dec 15 '18 at 7:31
$begingroup$
Yep, in fact, no finite subset of $mathbb{R}$ has a cluster point.
$endgroup$
– Anthony Ter
Dec 15 '18 at 7:35
|
show 3 more comments
$begingroup$
Thanks. Now I really get it . The closed set contains all of its cluster point but not all of its elements! Thank you!
$endgroup$
– Yang Gao
Dec 15 '18 at 7:17
$begingroup$
Now the empty set is the only cluster point of the set, right? Just a little "weird".
$endgroup$
– Yang Gao
Dec 15 '18 at 7:25
1
$begingroup$
No,the empty set isn't a point. The empty set represents the set of limit points, and I was trying to show that that set is contained in ${0}$. I should have used $subseteq$, not $in$. I'll edit it now.
$endgroup$
– Anthony Ter
Dec 15 '18 at 7:27
1
$begingroup$
So the set does not have a cluster point ? wow
$endgroup$
– Yang Gao
Dec 15 '18 at 7:31
$begingroup$
Yep, in fact, no finite subset of $mathbb{R}$ has a cluster point.
$endgroup$
– Anthony Ter
Dec 15 '18 at 7:35
$begingroup$
Thanks. Now I really get it . The closed set contains all of its cluster point but not all of its elements! Thank you!
$endgroup$
– Yang Gao
Dec 15 '18 at 7:17
$begingroup$
Thanks. Now I really get it . The closed set contains all of its cluster point but not all of its elements! Thank you!
$endgroup$
– Yang Gao
Dec 15 '18 at 7:17
$begingroup$
Now the empty set is the only cluster point of the set, right? Just a little "weird".
$endgroup$
– Yang Gao
Dec 15 '18 at 7:25
$begingroup$
Now the empty set is the only cluster point of the set, right? Just a little "weird".
$endgroup$
– Yang Gao
Dec 15 '18 at 7:25
1
1
$begingroup$
No,the empty set isn't a point. The empty set represents the set of limit points, and I was trying to show that that set is contained in ${0}$. I should have used $subseteq$, not $in$. I'll edit it now.
$endgroup$
– Anthony Ter
Dec 15 '18 at 7:27
$begingroup$
No,the empty set isn't a point. The empty set represents the set of limit points, and I was trying to show that that set is contained in ${0}$. I should have used $subseteq$, not $in$. I'll edit it now.
$endgroup$
– Anthony Ter
Dec 15 '18 at 7:27
1
1
$begingroup$
So the set does not have a cluster point ? wow
$endgroup$
– Yang Gao
Dec 15 '18 at 7:31
$begingroup$
So the set does not have a cluster point ? wow
$endgroup$
– Yang Gao
Dec 15 '18 at 7:31
$begingroup$
Yep, in fact, no finite subset of $mathbb{R}$ has a cluster point.
$endgroup$
– Anthony Ter
Dec 15 '18 at 7:35
$begingroup$
Yep, in fact, no finite subset of $mathbb{R}$ has a cluster point.
$endgroup$
– Anthony Ter
Dec 15 '18 at 7:35
|
show 3 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040240%2fis-0-a-cluster-point-of-the-set-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Do you think that the set is not closed? If yes then can you give a cluster point which is not in the set? The definition says that A set is closed iff it contains all its cluster point. If 0 is not the cluster point then why do you even worry about it?
$endgroup$
– Rakesh Bhatt
Dec 15 '18 at 6:51
$begingroup$
I got it ! I just thought 0 "should" be a cluster point of the set .Then the set does not have a cluster point, right? Thank you. But wait a minute, the set {0} contains the element 0 !
$endgroup$
– Yang Gao
Dec 15 '18 at 7:06
3
$begingroup$
Post the definition of "cluster point" in your book.
$endgroup$
– xbh
Dec 15 '18 at 7:12
$begingroup$
I think it appears at the answer provided by Anthony Ter .
$endgroup$
– Yang Gao
Dec 15 '18 at 7:19
$begingroup$
@YangGao The set {0} contains the element 0! Yes, It contains. So what?
$endgroup$
– Rakesh Bhatt
Dec 15 '18 at 9:21