some confusion about supremum and infimum
$begingroup$
Let $a_{mn}$ be a double array or real numbers. Define $$A=liminf_{nrightarrow infty} limsup_{mrightarrowinfty}a_{mn}\B=limsup_{nrightarrow infty} liminf_{mrightarrowinfty}a_{mn},$$
Then which one is true?
- $Ale B$
- $Age B $
My attempt :
I think option $1$ that $Ale B$ is true because the supremum is always greater than then infimum.
Is this correct ? Any hints/solution would be appreciated.
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $a_{mn}$ be a double array or real numbers. Define $$A=liminf_{nrightarrow infty} limsup_{mrightarrowinfty}a_{mn}\B=limsup_{nrightarrow infty} liminf_{mrightarrowinfty}a_{mn},$$
Then which one is true?
- $Ale B$
- $Age B $
My attempt :
I think option $1$ that $Ale B$ is true because the supremum is always greater than then infimum.
Is this correct ? Any hints/solution would be appreciated.
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $a_{mn}$ be a double array or real numbers. Define $$A=liminf_{nrightarrow infty} limsup_{mrightarrowinfty}a_{mn}\B=limsup_{nrightarrow infty} liminf_{mrightarrowinfty}a_{mn},$$
Then which one is true?
- $Ale B$
- $Age B $
My attempt :
I think option $1$ that $Ale B$ is true because the supremum is always greater than then infimum.
Is this correct ? Any hints/solution would be appreciated.
real-analysis
$endgroup$
Let $a_{mn}$ be a double array or real numbers. Define $$A=liminf_{nrightarrow infty} limsup_{mrightarrowinfty}a_{mn}\B=limsup_{nrightarrow infty} liminf_{mrightarrowinfty}a_{mn},$$
Then which one is true?
- $Ale B$
- $Age B $
My attempt :
I think option $1$ that $Ale B$ is true because the supremum is always greater than then infimum.
Is this correct ? Any hints/solution would be appreciated.
real-analysis
real-analysis
edited Dec 15 '18 at 7:50
Jonathan
16312
16312
asked Dec 15 '18 at 6:02
jasminejasmine
1,747417
1,747417
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Of course the supremum is always greater than or equal to the infimum. However, if one has mixtures of $limsup$ and $liminf$, it is indecisive which one is greater. For example, let $$
a_{mn} = (-1)^n (1-frac{1}{2^m}).
$$ Then we have
$$
1=liminf_{mtoinfty}limsup_{ntoinfty}a_{mn} >limsup_{mtoinfty}liminf_{ntoinfty}a_{mn} =-1
$$ while
$$
-1=liminf_{ntoinfty}limsup_{mtoinfty}a_{mn}<limsup_{ntoinfty}liminf_{mtoinfty}a_{mn}=1.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040217%2fsome-confusion-about-supremum-and-infimum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Of course the supremum is always greater than or equal to the infimum. However, if one has mixtures of $limsup$ and $liminf$, it is indecisive which one is greater. For example, let $$
a_{mn} = (-1)^n (1-frac{1}{2^m}).
$$ Then we have
$$
1=liminf_{mtoinfty}limsup_{ntoinfty}a_{mn} >limsup_{mtoinfty}liminf_{ntoinfty}a_{mn} =-1
$$ while
$$
-1=liminf_{ntoinfty}limsup_{mtoinfty}a_{mn}<limsup_{ntoinfty}liminf_{mtoinfty}a_{mn}=1.
$$
$endgroup$
add a comment |
$begingroup$
Of course the supremum is always greater than or equal to the infimum. However, if one has mixtures of $limsup$ and $liminf$, it is indecisive which one is greater. For example, let $$
a_{mn} = (-1)^n (1-frac{1}{2^m}).
$$ Then we have
$$
1=liminf_{mtoinfty}limsup_{ntoinfty}a_{mn} >limsup_{mtoinfty}liminf_{ntoinfty}a_{mn} =-1
$$ while
$$
-1=liminf_{ntoinfty}limsup_{mtoinfty}a_{mn}<limsup_{ntoinfty}liminf_{mtoinfty}a_{mn}=1.
$$
$endgroup$
add a comment |
$begingroup$
Of course the supremum is always greater than or equal to the infimum. However, if one has mixtures of $limsup$ and $liminf$, it is indecisive which one is greater. For example, let $$
a_{mn} = (-1)^n (1-frac{1}{2^m}).
$$ Then we have
$$
1=liminf_{mtoinfty}limsup_{ntoinfty}a_{mn} >limsup_{mtoinfty}liminf_{ntoinfty}a_{mn} =-1
$$ while
$$
-1=liminf_{ntoinfty}limsup_{mtoinfty}a_{mn}<limsup_{ntoinfty}liminf_{mtoinfty}a_{mn}=1.
$$
$endgroup$
Of course the supremum is always greater than or equal to the infimum. However, if one has mixtures of $limsup$ and $liminf$, it is indecisive which one is greater. For example, let $$
a_{mn} = (-1)^n (1-frac{1}{2^m}).
$$ Then we have
$$
1=liminf_{mtoinfty}limsup_{ntoinfty}a_{mn} >limsup_{mtoinfty}liminf_{ntoinfty}a_{mn} =-1
$$ while
$$
-1=liminf_{ntoinfty}limsup_{mtoinfty}a_{mn}<limsup_{ntoinfty}liminf_{mtoinfty}a_{mn}=1.
$$
answered Dec 15 '18 at 7:11
SongSong
12.9k631
12.9k631
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040217%2fsome-confusion-about-supremum-and-infimum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown