Pytorch RNN always gives the same output for multivariate time series












2















I have a time series data looking something like this:
enter image description here



I am trying to model this with a sequence to sequence RNN in pytorch. It trains well and I can see the loss going down. But on testing it gives the same out put irrespective of the input.



My Model:



class RNNModel(nn.Module):

def __init__(self, predictor_size, hidden_size, num_layers, dropout = 0.3, output_size=83):
super(RNNModel, self).__init__()
self.drop = nn.Dropout(dropout)
self.rnn = nn.GRU(predictor_size, hidden_size, num_layers=num_layers, dropout = dropout)
self.decoder = nn.Linear(hidden_size, output_size)
self.init_weights()
self.hidden_size = hidden_size
self.num_layers = num_layers

def init_weights(self):
initrange = 0.1
self.decoder.bias.data.fill_(0)
self.decoder.weight.data.uniform_(-initrange, initrange)

def forward(self, input, hidden):
output, hidden = self.rnn(input, hidden)
output = self.drop(output)
decoded = self.decoder(output.view(output.size(0) * output.size(1), output.size(2)))
return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden

def init_hidden(self, batch_size):
weight = next(self.parameters()).data
return Variable(weight.new(self.num_layers, batch_size, self.hidden_size).zero_())


Train Method:



def train(data_source, lr):
# turn on training mode that enables dropout

model.train()
total_loss = 0
hidden = model.init_hidden(bs_train)
optimizer = optim.Adam(model.parameters(), lr = lr)

for batch, i in enumerate(range(0, data_source.size(0) - 1, bptt_size)):

data, targets = get_batch(data_source, i)

# Starting each batch, we detach the hidden state from how it was previously produced
# so that model doesen't ry to backprop to all the way start of the dataset
# unrolling of the graph will go from the last iteration to the first iteration
hidden = Variable(hidden.data)
if cuda.is_available():
hidden = hidden.cuda()
optimizer.zero_grad()

output, hidden = model(data, hidden)
loss = criterion(output, targets)
loss.backward()

# clip_grad_norm to prevent gradient explosion
torch.nn.utils.clip_grad_norm(model.parameters(), clip)

optimizer.step()
total_loss += len(data) * loss.data
# return accumulated loss for all the iterations
return total_loss[0] / len(data_source)


Evaluation Method:



def evaluate(data_source):
# turn on evaluation to disable dropout
model.eval()
model.train(False)
total_loss = 0
hidden = model.init_hidden(bs_valid)

for i in range(0, data_source.size(0) - 1, bptt_size):
data, targets = get_batch(data_source, i, evaluation = True)

if cuda.is_available():
hidden = hidden.cuda()

output, hidden = model(data, hidden)
total_loss += len(data) * criterion(output, targets).data
hidden = Variable(hidden.data)

return total_loss[0]/len(data_source)


Training Loop:



best_val_loss = None
best_epoch = 0
def run(epochs, lr):
val_losses =
num_epochs =
global best_val_loss
global best_epoch
for epoch in range(0, epochs):
train_loss = train(train_set, lr)
val_loss = evaluate(test_set)
num_epochs.append(epoch)
val_losses.append(val_loss)
print("Train Loss: ", train_loss, " Validation Loss: ", val_loss)

if not best_val_loss or val_loss < best_val_loss:
best_val_loss = val_loss
torch.save(model.state_dict(), "./4.model.pth")
best_epoch = epoch
return num_epochs, val_losses


Loss with epochs:



enter image description here



Getting the output:



model = RNNModel(predictor_size, hidden_size, num_layers, dropout_pct, output_size)
model.load_state_dict(torch.load("./4.model.pth"))

if cuda.is_available():
model.cuda()

model.eval()
model.train(False)
hidden = model.init_hidden(1)
inp = torch.Tensor(var[105])
input = Variable(inp.contiguous().view(1,1,predictor_size), volatile=True)
if cuda.is_available():
input.data = input.data.cuda()
output, hidden = model(input, hidden)
op = output.squeeze().data.cpu()
print(op)


Here I always get the same output irrespective of datapoint I give as input. Can somebody please tell me what I am doing wrong.










share|improve this question

























  • i'm not familiar with pytorch, so i'll only comment on a higher level. just based on the loss plot, seems like model is 'learning'. If you evaluate the model right before you save the model, and after training is done, do you get the expected performance? if that is the case, then the problem lies in the inference part of the code, else problem is in the training part of the code.

    – teng
    Nov 24 '18 at 2:28











  • No I get the same result even if I test it just after training. I am not able to figure this out. Any help would be appreciated.

    – Aryan Singh
    Nov 25 '18 at 4:47
















2















I have a time series data looking something like this:
enter image description here



I am trying to model this with a sequence to sequence RNN in pytorch. It trains well and I can see the loss going down. But on testing it gives the same out put irrespective of the input.



My Model:



class RNNModel(nn.Module):

def __init__(self, predictor_size, hidden_size, num_layers, dropout = 0.3, output_size=83):
super(RNNModel, self).__init__()
self.drop = nn.Dropout(dropout)
self.rnn = nn.GRU(predictor_size, hidden_size, num_layers=num_layers, dropout = dropout)
self.decoder = nn.Linear(hidden_size, output_size)
self.init_weights()
self.hidden_size = hidden_size
self.num_layers = num_layers

def init_weights(self):
initrange = 0.1
self.decoder.bias.data.fill_(0)
self.decoder.weight.data.uniform_(-initrange, initrange)

def forward(self, input, hidden):
output, hidden = self.rnn(input, hidden)
output = self.drop(output)
decoded = self.decoder(output.view(output.size(0) * output.size(1), output.size(2)))
return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden

def init_hidden(self, batch_size):
weight = next(self.parameters()).data
return Variable(weight.new(self.num_layers, batch_size, self.hidden_size).zero_())


Train Method:



def train(data_source, lr):
# turn on training mode that enables dropout

model.train()
total_loss = 0
hidden = model.init_hidden(bs_train)
optimizer = optim.Adam(model.parameters(), lr = lr)

for batch, i in enumerate(range(0, data_source.size(0) - 1, bptt_size)):

data, targets = get_batch(data_source, i)

# Starting each batch, we detach the hidden state from how it was previously produced
# so that model doesen't ry to backprop to all the way start of the dataset
# unrolling of the graph will go from the last iteration to the first iteration
hidden = Variable(hidden.data)
if cuda.is_available():
hidden = hidden.cuda()
optimizer.zero_grad()

output, hidden = model(data, hidden)
loss = criterion(output, targets)
loss.backward()

# clip_grad_norm to prevent gradient explosion
torch.nn.utils.clip_grad_norm(model.parameters(), clip)

optimizer.step()
total_loss += len(data) * loss.data
# return accumulated loss for all the iterations
return total_loss[0] / len(data_source)


Evaluation Method:



def evaluate(data_source):
# turn on evaluation to disable dropout
model.eval()
model.train(False)
total_loss = 0
hidden = model.init_hidden(bs_valid)

for i in range(0, data_source.size(0) - 1, bptt_size):
data, targets = get_batch(data_source, i, evaluation = True)

if cuda.is_available():
hidden = hidden.cuda()

output, hidden = model(data, hidden)
total_loss += len(data) * criterion(output, targets).data
hidden = Variable(hidden.data)

return total_loss[0]/len(data_source)


Training Loop:



best_val_loss = None
best_epoch = 0
def run(epochs, lr):
val_losses =
num_epochs =
global best_val_loss
global best_epoch
for epoch in range(0, epochs):
train_loss = train(train_set, lr)
val_loss = evaluate(test_set)
num_epochs.append(epoch)
val_losses.append(val_loss)
print("Train Loss: ", train_loss, " Validation Loss: ", val_loss)

if not best_val_loss or val_loss < best_val_loss:
best_val_loss = val_loss
torch.save(model.state_dict(), "./4.model.pth")
best_epoch = epoch
return num_epochs, val_losses


Loss with epochs:



enter image description here



Getting the output:



model = RNNModel(predictor_size, hidden_size, num_layers, dropout_pct, output_size)
model.load_state_dict(torch.load("./4.model.pth"))

if cuda.is_available():
model.cuda()

model.eval()
model.train(False)
hidden = model.init_hidden(1)
inp = torch.Tensor(var[105])
input = Variable(inp.contiguous().view(1,1,predictor_size), volatile=True)
if cuda.is_available():
input.data = input.data.cuda()
output, hidden = model(input, hidden)
op = output.squeeze().data.cpu()
print(op)


Here I always get the same output irrespective of datapoint I give as input. Can somebody please tell me what I am doing wrong.










share|improve this question

























  • i'm not familiar with pytorch, so i'll only comment on a higher level. just based on the loss plot, seems like model is 'learning'. If you evaluate the model right before you save the model, and after training is done, do you get the expected performance? if that is the case, then the problem lies in the inference part of the code, else problem is in the training part of the code.

    – teng
    Nov 24 '18 at 2:28











  • No I get the same result even if I test it just after training. I am not able to figure this out. Any help would be appreciated.

    – Aryan Singh
    Nov 25 '18 at 4:47














2












2








2








I have a time series data looking something like this:
enter image description here



I am trying to model this with a sequence to sequence RNN in pytorch. It trains well and I can see the loss going down. But on testing it gives the same out put irrespective of the input.



My Model:



class RNNModel(nn.Module):

def __init__(self, predictor_size, hidden_size, num_layers, dropout = 0.3, output_size=83):
super(RNNModel, self).__init__()
self.drop = nn.Dropout(dropout)
self.rnn = nn.GRU(predictor_size, hidden_size, num_layers=num_layers, dropout = dropout)
self.decoder = nn.Linear(hidden_size, output_size)
self.init_weights()
self.hidden_size = hidden_size
self.num_layers = num_layers

def init_weights(self):
initrange = 0.1
self.decoder.bias.data.fill_(0)
self.decoder.weight.data.uniform_(-initrange, initrange)

def forward(self, input, hidden):
output, hidden = self.rnn(input, hidden)
output = self.drop(output)
decoded = self.decoder(output.view(output.size(0) * output.size(1), output.size(2)))
return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden

def init_hidden(self, batch_size):
weight = next(self.parameters()).data
return Variable(weight.new(self.num_layers, batch_size, self.hidden_size).zero_())


Train Method:



def train(data_source, lr):
# turn on training mode that enables dropout

model.train()
total_loss = 0
hidden = model.init_hidden(bs_train)
optimizer = optim.Adam(model.parameters(), lr = lr)

for batch, i in enumerate(range(0, data_source.size(0) - 1, bptt_size)):

data, targets = get_batch(data_source, i)

# Starting each batch, we detach the hidden state from how it was previously produced
# so that model doesen't ry to backprop to all the way start of the dataset
# unrolling of the graph will go from the last iteration to the first iteration
hidden = Variable(hidden.data)
if cuda.is_available():
hidden = hidden.cuda()
optimizer.zero_grad()

output, hidden = model(data, hidden)
loss = criterion(output, targets)
loss.backward()

# clip_grad_norm to prevent gradient explosion
torch.nn.utils.clip_grad_norm(model.parameters(), clip)

optimizer.step()
total_loss += len(data) * loss.data
# return accumulated loss for all the iterations
return total_loss[0] / len(data_source)


Evaluation Method:



def evaluate(data_source):
# turn on evaluation to disable dropout
model.eval()
model.train(False)
total_loss = 0
hidden = model.init_hidden(bs_valid)

for i in range(0, data_source.size(0) - 1, bptt_size):
data, targets = get_batch(data_source, i, evaluation = True)

if cuda.is_available():
hidden = hidden.cuda()

output, hidden = model(data, hidden)
total_loss += len(data) * criterion(output, targets).data
hidden = Variable(hidden.data)

return total_loss[0]/len(data_source)


Training Loop:



best_val_loss = None
best_epoch = 0
def run(epochs, lr):
val_losses =
num_epochs =
global best_val_loss
global best_epoch
for epoch in range(0, epochs):
train_loss = train(train_set, lr)
val_loss = evaluate(test_set)
num_epochs.append(epoch)
val_losses.append(val_loss)
print("Train Loss: ", train_loss, " Validation Loss: ", val_loss)

if not best_val_loss or val_loss < best_val_loss:
best_val_loss = val_loss
torch.save(model.state_dict(), "./4.model.pth")
best_epoch = epoch
return num_epochs, val_losses


Loss with epochs:



enter image description here



Getting the output:



model = RNNModel(predictor_size, hidden_size, num_layers, dropout_pct, output_size)
model.load_state_dict(torch.load("./4.model.pth"))

if cuda.is_available():
model.cuda()

model.eval()
model.train(False)
hidden = model.init_hidden(1)
inp = torch.Tensor(var[105])
input = Variable(inp.contiguous().view(1,1,predictor_size), volatile=True)
if cuda.is_available():
input.data = input.data.cuda()
output, hidden = model(input, hidden)
op = output.squeeze().data.cpu()
print(op)


Here I always get the same output irrespective of datapoint I give as input. Can somebody please tell me what I am doing wrong.










share|improve this question
















I have a time series data looking something like this:
enter image description here



I am trying to model this with a sequence to sequence RNN in pytorch. It trains well and I can see the loss going down. But on testing it gives the same out put irrespective of the input.



My Model:



class RNNModel(nn.Module):

def __init__(self, predictor_size, hidden_size, num_layers, dropout = 0.3, output_size=83):
super(RNNModel, self).__init__()
self.drop = nn.Dropout(dropout)
self.rnn = nn.GRU(predictor_size, hidden_size, num_layers=num_layers, dropout = dropout)
self.decoder = nn.Linear(hidden_size, output_size)
self.init_weights()
self.hidden_size = hidden_size
self.num_layers = num_layers

def init_weights(self):
initrange = 0.1
self.decoder.bias.data.fill_(0)
self.decoder.weight.data.uniform_(-initrange, initrange)

def forward(self, input, hidden):
output, hidden = self.rnn(input, hidden)
output = self.drop(output)
decoded = self.decoder(output.view(output.size(0) * output.size(1), output.size(2)))
return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden

def init_hidden(self, batch_size):
weight = next(self.parameters()).data
return Variable(weight.new(self.num_layers, batch_size, self.hidden_size).zero_())


Train Method:



def train(data_source, lr):
# turn on training mode that enables dropout

model.train()
total_loss = 0
hidden = model.init_hidden(bs_train)
optimizer = optim.Adam(model.parameters(), lr = lr)

for batch, i in enumerate(range(0, data_source.size(0) - 1, bptt_size)):

data, targets = get_batch(data_source, i)

# Starting each batch, we detach the hidden state from how it was previously produced
# so that model doesen't ry to backprop to all the way start of the dataset
# unrolling of the graph will go from the last iteration to the first iteration
hidden = Variable(hidden.data)
if cuda.is_available():
hidden = hidden.cuda()
optimizer.zero_grad()

output, hidden = model(data, hidden)
loss = criterion(output, targets)
loss.backward()

# clip_grad_norm to prevent gradient explosion
torch.nn.utils.clip_grad_norm(model.parameters(), clip)

optimizer.step()
total_loss += len(data) * loss.data
# return accumulated loss for all the iterations
return total_loss[0] / len(data_source)


Evaluation Method:



def evaluate(data_source):
# turn on evaluation to disable dropout
model.eval()
model.train(False)
total_loss = 0
hidden = model.init_hidden(bs_valid)

for i in range(0, data_source.size(0) - 1, bptt_size):
data, targets = get_batch(data_source, i, evaluation = True)

if cuda.is_available():
hidden = hidden.cuda()

output, hidden = model(data, hidden)
total_loss += len(data) * criterion(output, targets).data
hidden = Variable(hidden.data)

return total_loss[0]/len(data_source)


Training Loop:



best_val_loss = None
best_epoch = 0
def run(epochs, lr):
val_losses =
num_epochs =
global best_val_loss
global best_epoch
for epoch in range(0, epochs):
train_loss = train(train_set, lr)
val_loss = evaluate(test_set)
num_epochs.append(epoch)
val_losses.append(val_loss)
print("Train Loss: ", train_loss, " Validation Loss: ", val_loss)

if not best_val_loss or val_loss < best_val_loss:
best_val_loss = val_loss
torch.save(model.state_dict(), "./4.model.pth")
best_epoch = epoch
return num_epochs, val_losses


Loss with epochs:



enter image description here



Getting the output:



model = RNNModel(predictor_size, hidden_size, num_layers, dropout_pct, output_size)
model.load_state_dict(torch.load("./4.model.pth"))

if cuda.is_available():
model.cuda()

model.eval()
model.train(False)
hidden = model.init_hidden(1)
inp = torch.Tensor(var[105])
input = Variable(inp.contiguous().view(1,1,predictor_size), volatile=True)
if cuda.is_available():
input.data = input.data.cuda()
output, hidden = model(input, hidden)
op = output.squeeze().data.cpu()
print(op)


Here I always get the same output irrespective of datapoint I give as input. Can somebody please tell me what I am doing wrong.







python deep-learning time-series pytorch rnn






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 24 '18 at 2:09







Aryan Singh

















asked Nov 24 '18 at 2:04









Aryan SinghAryan Singh

4719




4719













  • i'm not familiar with pytorch, so i'll only comment on a higher level. just based on the loss plot, seems like model is 'learning'. If you evaluate the model right before you save the model, and after training is done, do you get the expected performance? if that is the case, then the problem lies in the inference part of the code, else problem is in the training part of the code.

    – teng
    Nov 24 '18 at 2:28











  • No I get the same result even if I test it just after training. I am not able to figure this out. Any help would be appreciated.

    – Aryan Singh
    Nov 25 '18 at 4:47



















  • i'm not familiar with pytorch, so i'll only comment on a higher level. just based on the loss plot, seems like model is 'learning'. If you evaluate the model right before you save the model, and after training is done, do you get the expected performance? if that is the case, then the problem lies in the inference part of the code, else problem is in the training part of the code.

    – teng
    Nov 24 '18 at 2:28











  • No I get the same result even if I test it just after training. I am not able to figure this out. Any help would be appreciated.

    – Aryan Singh
    Nov 25 '18 at 4:47

















i'm not familiar with pytorch, so i'll only comment on a higher level. just based on the loss plot, seems like model is 'learning'. If you evaluate the model right before you save the model, and after training is done, do you get the expected performance? if that is the case, then the problem lies in the inference part of the code, else problem is in the training part of the code.

– teng
Nov 24 '18 at 2:28





i'm not familiar with pytorch, so i'll only comment on a higher level. just based on the loss plot, seems like model is 'learning'. If you evaluate the model right before you save the model, and after training is done, do you get the expected performance? if that is the case, then the problem lies in the inference part of the code, else problem is in the training part of the code.

– teng
Nov 24 '18 at 2:28













No I get the same result even if I test it just after training. I am not able to figure this out. Any help would be appreciated.

– Aryan Singh
Nov 25 '18 at 4:47





No I get the same result even if I test it just after training. I am not able to figure this out. Any help would be appreciated.

– Aryan Singh
Nov 25 '18 at 4:47












0






active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53454589%2fpytorch-rnn-always-gives-the-same-output-for-multivariate-time-series%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53454589%2fpytorch-rnn-always-gives-the-same-output-for-multivariate-time-series%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen