Find the Area of triangle in the semi-circle












0












$begingroup$


enter image description here



In the above figure, O is the centre of the circle.



If $angle BCO=30 ^circ$ and BC=$12 sqrt 3$, what is the area of triangle ABO?



I worked like OA=OB=OC(radii of the circle).



So, $angle OBC=30^circ,angle BOC=120^circ$



$angle AOB=60^circ,angle ABO=60^circ,angle OAB=60^circ$



Triangle AOB comes to be an equilateral triangle.



How Do I find OA?



Please help.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Can you find a right-angled triangle and use Pythagoras?
    $endgroup$
    – Mark Bennet
    Dec 25 '18 at 2:01










  • $begingroup$
    You mean AC=2r,AB=r and $angle ABC=90^circ$ ?
    $endgroup$
    – user3767495
    Dec 25 '18 at 2:02










  • $begingroup$
    That's the one.
    $endgroup$
    – Mark Bennet
    Dec 25 '18 at 8:10
















0












$begingroup$


enter image description here



In the above figure, O is the centre of the circle.



If $angle BCO=30 ^circ$ and BC=$12 sqrt 3$, what is the area of triangle ABO?



I worked like OA=OB=OC(radii of the circle).



So, $angle OBC=30^circ,angle BOC=120^circ$



$angle AOB=60^circ,angle ABO=60^circ,angle OAB=60^circ$



Triangle AOB comes to be an equilateral triangle.



How Do I find OA?



Please help.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Can you find a right-angled triangle and use Pythagoras?
    $endgroup$
    – Mark Bennet
    Dec 25 '18 at 2:01










  • $begingroup$
    You mean AC=2r,AB=r and $angle ABC=90^circ$ ?
    $endgroup$
    – user3767495
    Dec 25 '18 at 2:02










  • $begingroup$
    That's the one.
    $endgroup$
    – Mark Bennet
    Dec 25 '18 at 8:10














0












0








0





$begingroup$


enter image description here



In the above figure, O is the centre of the circle.



If $angle BCO=30 ^circ$ and BC=$12 sqrt 3$, what is the area of triangle ABO?



I worked like OA=OB=OC(radii of the circle).



So, $angle OBC=30^circ,angle BOC=120^circ$



$angle AOB=60^circ,angle ABO=60^circ,angle OAB=60^circ$



Triangle AOB comes to be an equilateral triangle.



How Do I find OA?



Please help.










share|cite|improve this question









$endgroup$




enter image description here



In the above figure, O is the centre of the circle.



If $angle BCO=30 ^circ$ and BC=$12 sqrt 3$, what is the area of triangle ABO?



I worked like OA=OB=OC(radii of the circle).



So, $angle OBC=30^circ,angle BOC=120^circ$



$angle AOB=60^circ,angle ABO=60^circ,angle OAB=60^circ$



Triangle AOB comes to be an equilateral triangle.



How Do I find OA?



Please help.







geometry






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 25 '18 at 1:53









user3767495user3767495

4078




4078












  • $begingroup$
    Can you find a right-angled triangle and use Pythagoras?
    $endgroup$
    – Mark Bennet
    Dec 25 '18 at 2:01










  • $begingroup$
    You mean AC=2r,AB=r and $angle ABC=90^circ$ ?
    $endgroup$
    – user3767495
    Dec 25 '18 at 2:02










  • $begingroup$
    That's the one.
    $endgroup$
    – Mark Bennet
    Dec 25 '18 at 8:10


















  • $begingroup$
    Can you find a right-angled triangle and use Pythagoras?
    $endgroup$
    – Mark Bennet
    Dec 25 '18 at 2:01










  • $begingroup$
    You mean AC=2r,AB=r and $angle ABC=90^circ$ ?
    $endgroup$
    – user3767495
    Dec 25 '18 at 2:02










  • $begingroup$
    That's the one.
    $endgroup$
    – Mark Bennet
    Dec 25 '18 at 8:10
















$begingroup$
Can you find a right-angled triangle and use Pythagoras?
$endgroup$
– Mark Bennet
Dec 25 '18 at 2:01




$begingroup$
Can you find a right-angled triangle and use Pythagoras?
$endgroup$
– Mark Bennet
Dec 25 '18 at 2:01












$begingroup$
You mean AC=2r,AB=r and $angle ABC=90^circ$ ?
$endgroup$
– user3767495
Dec 25 '18 at 2:02




$begingroup$
You mean AC=2r,AB=r and $angle ABC=90^circ$ ?
$endgroup$
– user3767495
Dec 25 '18 at 2:02












$begingroup$
That's the one.
$endgroup$
– Mark Bennet
Dec 25 '18 at 8:10




$begingroup$
That's the one.
$endgroup$
– Mark Bennet
Dec 25 '18 at 8:10










2 Answers
2






active

oldest

votes


















2












$begingroup$

The ABC angle is a right angle, so $12sqrt{3} tan(30) = AB$ then $frac{ABcdot BC}{2}$ and you got it.






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    Let $AO=x$.



    Thus, $AB=2x$ and since $measuredangle BCO=30^{circ},$ we obtain: $$AB=frac{1}{2}AC=x.$$
    Now, by Pythagoras
    $$AC^2-AB^2=BC^2$$ or
    $$(2x)^2-x^2=(12sqrt3)^2,$$ which gives $$x=12.$$
    Can you end it now?






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051769%2ffind-the-area-of-triangle-in-the-semi-circle%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      The ABC angle is a right angle, so $12sqrt{3} tan(30) = AB$ then $frac{ABcdot BC}{2}$ and you got it.






      share|cite|improve this answer











      $endgroup$


















        2












        $begingroup$

        The ABC angle is a right angle, so $12sqrt{3} tan(30) = AB$ then $frac{ABcdot BC}{2}$ and you got it.






        share|cite|improve this answer











        $endgroup$
















          2












          2








          2





          $begingroup$

          The ABC angle is a right angle, so $12sqrt{3} tan(30) = AB$ then $frac{ABcdot BC}{2}$ and you got it.






          share|cite|improve this answer











          $endgroup$



          The ABC angle is a right angle, so $12sqrt{3} tan(30) = AB$ then $frac{ABcdot BC}{2}$ and you got it.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 25 '18 at 3:00









          Namaste

          1




          1










          answered Dec 25 '18 at 2:14









          AndarrkorAndarrkor

          496




          496























              0












              $begingroup$

              Let $AO=x$.



              Thus, $AB=2x$ and since $measuredangle BCO=30^{circ},$ we obtain: $$AB=frac{1}{2}AC=x.$$
              Now, by Pythagoras
              $$AC^2-AB^2=BC^2$$ or
              $$(2x)^2-x^2=(12sqrt3)^2,$$ which gives $$x=12.$$
              Can you end it now?






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Let $AO=x$.



                Thus, $AB=2x$ and since $measuredangle BCO=30^{circ},$ we obtain: $$AB=frac{1}{2}AC=x.$$
                Now, by Pythagoras
                $$AC^2-AB^2=BC^2$$ or
                $$(2x)^2-x^2=(12sqrt3)^2,$$ which gives $$x=12.$$
                Can you end it now?






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Let $AO=x$.



                  Thus, $AB=2x$ and since $measuredangle BCO=30^{circ},$ we obtain: $$AB=frac{1}{2}AC=x.$$
                  Now, by Pythagoras
                  $$AC^2-AB^2=BC^2$$ or
                  $$(2x)^2-x^2=(12sqrt3)^2,$$ which gives $$x=12.$$
                  Can you end it now?






                  share|cite|improve this answer









                  $endgroup$



                  Let $AO=x$.



                  Thus, $AB=2x$ and since $measuredangle BCO=30^{circ},$ we obtain: $$AB=frac{1}{2}AC=x.$$
                  Now, by Pythagoras
                  $$AC^2-AB^2=BC^2$$ or
                  $$(2x)^2-x^2=(12sqrt3)^2,$$ which gives $$x=12.$$
                  Can you end it now?







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 25 '18 at 6:33









                  Michael RozenbergMichael Rozenberg

                  107k1895199




                  107k1895199






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051769%2ffind-the-area-of-triangle-in-the-semi-circle%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Wiesbaden

                      Marschland

                      Dieringhausen