Finding the value of $cos(frac{180^o}7)$ — where am I wrong?
$begingroup$
Let $alpha=frac{180^o}7$.
Consider that
$$sin(3alpha)=sin(180^o-3alpha)=sin(4alpha)$$
and
$$cos(3alpha)=-cos(180^o-3alpha)=-cos(4alpha)text{.}$$
From $sin(3alpha)=sin(4alpha)$, we get
$$sin(alpha)cos(2alpha)+sin(2alpha)cos(alpha)=sin(2alpha)cos(2alpha)+sin(2alpha)cos(2alpha)$$
$$cos(2alpha)(sin(alpha)-sin(2alpha))=sin(2alpha)(cos(2alpha)-cos(alpha))$$
$$cos(2alpha)sin(alpha)(1-2cos(alpha))=2sin(alpha)cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=2cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=-2cos^2(alpha)(1-2cos(alpha))-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(1-2cos(alpha))=-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(2cos(alpha)-1)=2cos(alpha)$$
$$(4cos^2(alpha)-1)(2cos(alpha)-1)=2cos(alpha)$$
$$8cos^3(alpha)-4cos^2(alpha)-4cos(alpha)+1=0$$
From $cos(3alpha)=-cos(4alpha)$ we get
$$cos(2alpha)cos(alpha)-sin(2alpha)sin(alpha)=sin(2alpha)sin(2alpha)-cos(2alpha)cos(2alpha)$$
$$cos(2alpha)(cos(2alpha)+cos(alpha))=sin(2alpha)(sin(2alpha)+sin(alpha))$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=sin^2(2alpha)+sin(2alpha)sin(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-cos^2(2alpha)+2sin^2(alpha)cos(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^2(alpha)-4cos(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^2(alpha)+4cos(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+4cos^3(alpha)-7cos(alpha)+1=0$$
Now, let $c=cos(alpha)$. From the previous equations:
$$8c^3-4c^2-4c+1=0 ...(1)$$
$$4c^4+4c^3-7c+1=0 ...(2)$$
Subtract the equations:
$$4c^4-4c^3+4c^2-3c=0$$
Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get
$$4c^3-4c^2+4c-3=0$$
$$8c^3-8c^2+8c-6=0 ...(3)$$
Subtract (3) from (1):
$$4c^2-12c+7=0$$
$$4c^2-12c+9=2$$
$$(2c-3)^2=2$$
$$2c-3=pmsqrt2$$
$$2c=3pmsqrt2$$
$$c=frac{3pmsqrt2}2$$
$$cos(frac{180^o}7)=frac{3pmsqrt2}2$$
Since $cos(frac{180^o}7)le1$, we get
$$cos(frac{180^o}7)=frac{3-sqrt2}2$$
But I substituted it to (1), and it doesn't fulfill the equation.
What did I do wrong?
trigonometry
$endgroup$
add a comment |
$begingroup$
Let $alpha=frac{180^o}7$.
Consider that
$$sin(3alpha)=sin(180^o-3alpha)=sin(4alpha)$$
and
$$cos(3alpha)=-cos(180^o-3alpha)=-cos(4alpha)text{.}$$
From $sin(3alpha)=sin(4alpha)$, we get
$$sin(alpha)cos(2alpha)+sin(2alpha)cos(alpha)=sin(2alpha)cos(2alpha)+sin(2alpha)cos(2alpha)$$
$$cos(2alpha)(sin(alpha)-sin(2alpha))=sin(2alpha)(cos(2alpha)-cos(alpha))$$
$$cos(2alpha)sin(alpha)(1-2cos(alpha))=2sin(alpha)cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=2cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=-2cos^2(alpha)(1-2cos(alpha))-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(1-2cos(alpha))=-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(2cos(alpha)-1)=2cos(alpha)$$
$$(4cos^2(alpha)-1)(2cos(alpha)-1)=2cos(alpha)$$
$$8cos^3(alpha)-4cos^2(alpha)-4cos(alpha)+1=0$$
From $cos(3alpha)=-cos(4alpha)$ we get
$$cos(2alpha)cos(alpha)-sin(2alpha)sin(alpha)=sin(2alpha)sin(2alpha)-cos(2alpha)cos(2alpha)$$
$$cos(2alpha)(cos(2alpha)+cos(alpha))=sin(2alpha)(sin(2alpha)+sin(alpha))$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=sin^2(2alpha)+sin(2alpha)sin(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-cos^2(2alpha)+2sin^2(alpha)cos(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^2(alpha)-4cos(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^2(alpha)+4cos(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+4cos^3(alpha)-7cos(alpha)+1=0$$
Now, let $c=cos(alpha)$. From the previous equations:
$$8c^3-4c^2-4c+1=0 ...(1)$$
$$4c^4+4c^3-7c+1=0 ...(2)$$
Subtract the equations:
$$4c^4-4c^3+4c^2-3c=0$$
Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get
$$4c^3-4c^2+4c-3=0$$
$$8c^3-8c^2+8c-6=0 ...(3)$$
Subtract (3) from (1):
$$4c^2-12c+7=0$$
$$4c^2-12c+9=2$$
$$(2c-3)^2=2$$
$$2c-3=pmsqrt2$$
$$2c=3pmsqrt2$$
$$c=frac{3pmsqrt2}2$$
$$cos(frac{180^o}7)=frac{3pmsqrt2}2$$
Since $cos(frac{180^o}7)le1$, we get
$$cos(frac{180^o}7)=frac{3-sqrt2}2$$
But I substituted it to (1), and it doesn't fulfill the equation.
What did I do wrong?
trigonometry
$endgroup$
1
$begingroup$
Is this trolling?
$endgroup$
– Chase Ryan Taylor
Dec 25 '18 at 1:24
$begingroup$
@ChaseRyanTaylor I found the mistake when I read the question over.
$endgroup$
– user_194421
Dec 25 '18 at 1:26
add a comment |
$begingroup$
Let $alpha=frac{180^o}7$.
Consider that
$$sin(3alpha)=sin(180^o-3alpha)=sin(4alpha)$$
and
$$cos(3alpha)=-cos(180^o-3alpha)=-cos(4alpha)text{.}$$
From $sin(3alpha)=sin(4alpha)$, we get
$$sin(alpha)cos(2alpha)+sin(2alpha)cos(alpha)=sin(2alpha)cos(2alpha)+sin(2alpha)cos(2alpha)$$
$$cos(2alpha)(sin(alpha)-sin(2alpha))=sin(2alpha)(cos(2alpha)-cos(alpha))$$
$$cos(2alpha)sin(alpha)(1-2cos(alpha))=2sin(alpha)cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=2cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=-2cos^2(alpha)(1-2cos(alpha))-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(1-2cos(alpha))=-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(2cos(alpha)-1)=2cos(alpha)$$
$$(4cos^2(alpha)-1)(2cos(alpha)-1)=2cos(alpha)$$
$$8cos^3(alpha)-4cos^2(alpha)-4cos(alpha)+1=0$$
From $cos(3alpha)=-cos(4alpha)$ we get
$$cos(2alpha)cos(alpha)-sin(2alpha)sin(alpha)=sin(2alpha)sin(2alpha)-cos(2alpha)cos(2alpha)$$
$$cos(2alpha)(cos(2alpha)+cos(alpha))=sin(2alpha)(sin(2alpha)+sin(alpha))$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=sin^2(2alpha)+sin(2alpha)sin(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-cos^2(2alpha)+2sin^2(alpha)cos(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^2(alpha)-4cos(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^2(alpha)+4cos(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+4cos^3(alpha)-7cos(alpha)+1=0$$
Now, let $c=cos(alpha)$. From the previous equations:
$$8c^3-4c^2-4c+1=0 ...(1)$$
$$4c^4+4c^3-7c+1=0 ...(2)$$
Subtract the equations:
$$4c^4-4c^3+4c^2-3c=0$$
Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get
$$4c^3-4c^2+4c-3=0$$
$$8c^3-8c^2+8c-6=0 ...(3)$$
Subtract (3) from (1):
$$4c^2-12c+7=0$$
$$4c^2-12c+9=2$$
$$(2c-3)^2=2$$
$$2c-3=pmsqrt2$$
$$2c=3pmsqrt2$$
$$c=frac{3pmsqrt2}2$$
$$cos(frac{180^o}7)=frac{3pmsqrt2}2$$
Since $cos(frac{180^o}7)le1$, we get
$$cos(frac{180^o}7)=frac{3-sqrt2}2$$
But I substituted it to (1), and it doesn't fulfill the equation.
What did I do wrong?
trigonometry
$endgroup$
Let $alpha=frac{180^o}7$.
Consider that
$$sin(3alpha)=sin(180^o-3alpha)=sin(4alpha)$$
and
$$cos(3alpha)=-cos(180^o-3alpha)=-cos(4alpha)text{.}$$
From $sin(3alpha)=sin(4alpha)$, we get
$$sin(alpha)cos(2alpha)+sin(2alpha)cos(alpha)=sin(2alpha)cos(2alpha)+sin(2alpha)cos(2alpha)$$
$$cos(2alpha)(sin(alpha)-sin(2alpha))=sin(2alpha)(cos(2alpha)-cos(alpha))$$
$$cos(2alpha)sin(alpha)(1-2cos(alpha))=2sin(alpha)cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=2cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=-2cos^2(alpha)(1-2cos(alpha))-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(1-2cos(alpha))=-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(2cos(alpha)-1)=2cos(alpha)$$
$$(4cos^2(alpha)-1)(2cos(alpha)-1)=2cos(alpha)$$
$$8cos^3(alpha)-4cos^2(alpha)-4cos(alpha)+1=0$$
From $cos(3alpha)=-cos(4alpha)$ we get
$$cos(2alpha)cos(alpha)-sin(2alpha)sin(alpha)=sin(2alpha)sin(2alpha)-cos(2alpha)cos(2alpha)$$
$$cos(2alpha)(cos(2alpha)+cos(alpha))=sin(2alpha)(sin(2alpha)+sin(alpha))$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=sin^2(2alpha)+sin(2alpha)sin(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-cos^2(2alpha)+2sin^2(alpha)cos(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^2(alpha)-4cos(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^2(alpha)+4cos(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+4cos^3(alpha)-7cos(alpha)+1=0$$
Now, let $c=cos(alpha)$. From the previous equations:
$$8c^3-4c^2-4c+1=0 ...(1)$$
$$4c^4+4c^3-7c+1=0 ...(2)$$
Subtract the equations:
$$4c^4-4c^3+4c^2-3c=0$$
Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get
$$4c^3-4c^2+4c-3=0$$
$$8c^3-8c^2+8c-6=0 ...(3)$$
Subtract (3) from (1):
$$4c^2-12c+7=0$$
$$4c^2-12c+9=2$$
$$(2c-3)^2=2$$
$$2c-3=pmsqrt2$$
$$2c=3pmsqrt2$$
$$c=frac{3pmsqrt2}2$$
$$cos(frac{180^o}7)=frac{3pmsqrt2}2$$
Since $cos(frac{180^o}7)le1$, we get
$$cos(frac{180^o}7)=frac{3-sqrt2}2$$
But I substituted it to (1), and it doesn't fulfill the equation.
What did I do wrong?
trigonometry
trigonometry
asked Dec 25 '18 at 1:02
user_194421user_194421
962316
962316
1
$begingroup$
Is this trolling?
$endgroup$
– Chase Ryan Taylor
Dec 25 '18 at 1:24
$begingroup$
@ChaseRyanTaylor I found the mistake when I read the question over.
$endgroup$
– user_194421
Dec 25 '18 at 1:26
add a comment |
1
$begingroup$
Is this trolling?
$endgroup$
– Chase Ryan Taylor
Dec 25 '18 at 1:24
$begingroup$
@ChaseRyanTaylor I found the mistake when I read the question over.
$endgroup$
– user_194421
Dec 25 '18 at 1:26
1
1
$begingroup$
Is this trolling?
$endgroup$
– Chase Ryan Taylor
Dec 25 '18 at 1:24
$begingroup$
Is this trolling?
$endgroup$
– Chase Ryan Taylor
Dec 25 '18 at 1:24
$begingroup$
@ChaseRyanTaylor I found the mistake when I read the question over.
$endgroup$
– user_194421
Dec 25 '18 at 1:26
$begingroup$
@ChaseRyanTaylor I found the mistake when I read the question over.
$endgroup$
– user_194421
Dec 25 '18 at 1:26
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
In the fifth line of the argument from $cos(3alpha)=-cos(4alpha)$, I made the mistake of turning $cos(2alpha)$ to $2cos(alpha)-1$, instead of the correct $2cos^2(alpha)-1$.
Now let's carry on, fixing the mistake:
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos^2(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^4(alpha)-4cos^2(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^4(alpha)+4cos^2(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
$$8cos^4(alpha)+4cos^3(alpha)-8cos^2(alpha)-3cos(alpha)+1=0$$
Now, let $c=cos(alpha)$. From the previous equations:
$$8c^3-4c^2-4c+1=0 ...(1)$$
$$8c^4+4c^3-8c^2-3c+1=0 ...(2)$$
Subtract (1) from (2):
$$8c^4-4c^3-4c^2+c=0$$
Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get
$$8c^3-4c^2-4c+1=0 ...(1)$$
I can't go further, so the value to find is the root of that equation which is in the interval $(0,1)$ (only one).
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051755%2ffinding-the-value-of-cos-frac180o7-where-am-i-wrong%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In the fifth line of the argument from $cos(3alpha)=-cos(4alpha)$, I made the mistake of turning $cos(2alpha)$ to $2cos(alpha)-1$, instead of the correct $2cos^2(alpha)-1$.
Now let's carry on, fixing the mistake:
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos^2(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^4(alpha)-4cos^2(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^4(alpha)+4cos^2(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
$$8cos^4(alpha)+4cos^3(alpha)-8cos^2(alpha)-3cos(alpha)+1=0$$
Now, let $c=cos(alpha)$. From the previous equations:
$$8c^3-4c^2-4c+1=0 ...(1)$$
$$8c^4+4c^3-8c^2-3c+1=0 ...(2)$$
Subtract (1) from (2):
$$8c^4-4c^3-4c^2+c=0$$
Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get
$$8c^3-4c^2-4c+1=0 ...(1)$$
I can't go further, so the value to find is the root of that equation which is in the interval $(0,1)$ (only one).
$endgroup$
add a comment |
$begingroup$
In the fifth line of the argument from $cos(3alpha)=-cos(4alpha)$, I made the mistake of turning $cos(2alpha)$ to $2cos(alpha)-1$, instead of the correct $2cos^2(alpha)-1$.
Now let's carry on, fixing the mistake:
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos^2(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^4(alpha)-4cos^2(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^4(alpha)+4cos^2(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
$$8cos^4(alpha)+4cos^3(alpha)-8cos^2(alpha)-3cos(alpha)+1=0$$
Now, let $c=cos(alpha)$. From the previous equations:
$$8c^3-4c^2-4c+1=0 ...(1)$$
$$8c^4+4c^3-8c^2-3c+1=0 ...(2)$$
Subtract (1) from (2):
$$8c^4-4c^3-4c^2+c=0$$
Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get
$$8c^3-4c^2-4c+1=0 ...(1)$$
I can't go further, so the value to find is the root of that equation which is in the interval $(0,1)$ (only one).
$endgroup$
add a comment |
$begingroup$
In the fifth line of the argument from $cos(3alpha)=-cos(4alpha)$, I made the mistake of turning $cos(2alpha)$ to $2cos(alpha)-1$, instead of the correct $2cos^2(alpha)-1$.
Now let's carry on, fixing the mistake:
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos^2(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^4(alpha)-4cos^2(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^4(alpha)+4cos^2(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
$$8cos^4(alpha)+4cos^3(alpha)-8cos^2(alpha)-3cos(alpha)+1=0$$
Now, let $c=cos(alpha)$. From the previous equations:
$$8c^3-4c^2-4c+1=0 ...(1)$$
$$8c^4+4c^3-8c^2-3c+1=0 ...(2)$$
Subtract (1) from (2):
$$8c^4-4c^3-4c^2+c=0$$
Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get
$$8c^3-4c^2-4c+1=0 ...(1)$$
I can't go further, so the value to find is the root of that equation which is in the interval $(0,1)$ (only one).
$endgroup$
In the fifth line of the argument from $cos(3alpha)=-cos(4alpha)$, I made the mistake of turning $cos(2alpha)$ to $2cos(alpha)-1$, instead of the correct $2cos^2(alpha)-1$.
Now let's carry on, fixing the mistake:
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos^2(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^4(alpha)-4cos^2(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^4(alpha)+4cos^2(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
$$8cos^4(alpha)+4cos^3(alpha)-8cos^2(alpha)-3cos(alpha)+1=0$$
Now, let $c=cos(alpha)$. From the previous equations:
$$8c^3-4c^2-4c+1=0 ...(1)$$
$$8c^4+4c^3-8c^2-3c+1=0 ...(2)$$
Subtract (1) from (2):
$$8c^4-4c^3-4c^2+c=0$$
Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get
$$8c^3-4c^2-4c+1=0 ...(1)$$
I can't go further, so the value to find is the root of that equation which is in the interval $(0,1)$ (only one).
edited Dec 25 '18 at 1:24
answered Dec 25 '18 at 1:02
user_194421user_194421
962316
962316
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051755%2ffinding-the-value-of-cos-frac180o7-where-am-i-wrong%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Is this trolling?
$endgroup$
– Chase Ryan Taylor
Dec 25 '18 at 1:24
$begingroup$
@ChaseRyanTaylor I found the mistake when I read the question over.
$endgroup$
– user_194421
Dec 25 '18 at 1:26