Finding the value of $cos(frac{180^o}7)$ — where am I wrong?












2












$begingroup$


Let $alpha=frac{180^o}7$.



Consider that



$$sin(3alpha)=sin(180^o-3alpha)=sin(4alpha)$$



and



$$cos(3alpha)=-cos(180^o-3alpha)=-cos(4alpha)text{.}$$



From $sin(3alpha)=sin(4alpha)$, we get



$$sin(alpha)cos(2alpha)+sin(2alpha)cos(alpha)=sin(2alpha)cos(2alpha)+sin(2alpha)cos(2alpha)$$
$$cos(2alpha)(sin(alpha)-sin(2alpha))=sin(2alpha)(cos(2alpha)-cos(alpha))$$
$$cos(2alpha)sin(alpha)(1-2cos(alpha))=2sin(alpha)cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=2cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=-2cos^2(alpha)(1-2cos(alpha))-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(1-2cos(alpha))=-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(2cos(alpha)-1)=2cos(alpha)$$
$$(4cos^2(alpha)-1)(2cos(alpha)-1)=2cos(alpha)$$
$$8cos^3(alpha)-4cos^2(alpha)-4cos(alpha)+1=0$$



From $cos(3alpha)=-cos(4alpha)$ we get



$$cos(2alpha)cos(alpha)-sin(2alpha)sin(alpha)=sin(2alpha)sin(2alpha)-cos(2alpha)cos(2alpha)$$
$$cos(2alpha)(cos(2alpha)+cos(alpha))=sin(2alpha)(sin(2alpha)+sin(alpha))$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=sin^2(2alpha)+sin(2alpha)sin(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-cos^2(2alpha)+2sin^2(alpha)cos(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^2(alpha)-4cos(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^2(alpha)+4cos(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+4cos^3(alpha)-7cos(alpha)+1=0$$



Now, let $c=cos(alpha)$. From the previous equations:



$$8c^3-4c^2-4c+1=0 ...(1)$$
$$4c^4+4c^3-7c+1=0 ...(2)$$



Subtract the equations:



$$4c^4-4c^3+4c^2-3c=0$$



Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get



$$4c^3-4c^2+4c-3=0$$
$$8c^3-8c^2+8c-6=0 ...(3)$$



Subtract (3) from (1):



$$4c^2-12c+7=0$$
$$4c^2-12c+9=2$$
$$(2c-3)^2=2$$
$$2c-3=pmsqrt2$$
$$2c=3pmsqrt2$$
$$c=frac{3pmsqrt2}2$$
$$cos(frac{180^o}7)=frac{3pmsqrt2}2$$



Since $cos(frac{180^o}7)le1$, we get



$$cos(frac{180^o}7)=frac{3-sqrt2}2$$



But I substituted it to (1), and it doesn't fulfill the equation.



What did I do wrong?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Is this trolling?
    $endgroup$
    – Chase Ryan Taylor
    Dec 25 '18 at 1:24










  • $begingroup$
    @ChaseRyanTaylor I found the mistake when I read the question over.
    $endgroup$
    – user_194421
    Dec 25 '18 at 1:26
















2












$begingroup$


Let $alpha=frac{180^o}7$.



Consider that



$$sin(3alpha)=sin(180^o-3alpha)=sin(4alpha)$$



and



$$cos(3alpha)=-cos(180^o-3alpha)=-cos(4alpha)text{.}$$



From $sin(3alpha)=sin(4alpha)$, we get



$$sin(alpha)cos(2alpha)+sin(2alpha)cos(alpha)=sin(2alpha)cos(2alpha)+sin(2alpha)cos(2alpha)$$
$$cos(2alpha)(sin(alpha)-sin(2alpha))=sin(2alpha)(cos(2alpha)-cos(alpha))$$
$$cos(2alpha)sin(alpha)(1-2cos(alpha))=2sin(alpha)cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=2cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=-2cos^2(alpha)(1-2cos(alpha))-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(1-2cos(alpha))=-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(2cos(alpha)-1)=2cos(alpha)$$
$$(4cos^2(alpha)-1)(2cos(alpha)-1)=2cos(alpha)$$
$$8cos^3(alpha)-4cos^2(alpha)-4cos(alpha)+1=0$$



From $cos(3alpha)=-cos(4alpha)$ we get



$$cos(2alpha)cos(alpha)-sin(2alpha)sin(alpha)=sin(2alpha)sin(2alpha)-cos(2alpha)cos(2alpha)$$
$$cos(2alpha)(cos(2alpha)+cos(alpha))=sin(2alpha)(sin(2alpha)+sin(alpha))$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=sin^2(2alpha)+sin(2alpha)sin(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-cos^2(2alpha)+2sin^2(alpha)cos(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^2(alpha)-4cos(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^2(alpha)+4cos(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+4cos^3(alpha)-7cos(alpha)+1=0$$



Now, let $c=cos(alpha)$. From the previous equations:



$$8c^3-4c^2-4c+1=0 ...(1)$$
$$4c^4+4c^3-7c+1=0 ...(2)$$



Subtract the equations:



$$4c^4-4c^3+4c^2-3c=0$$



Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get



$$4c^3-4c^2+4c-3=0$$
$$8c^3-8c^2+8c-6=0 ...(3)$$



Subtract (3) from (1):



$$4c^2-12c+7=0$$
$$4c^2-12c+9=2$$
$$(2c-3)^2=2$$
$$2c-3=pmsqrt2$$
$$2c=3pmsqrt2$$
$$c=frac{3pmsqrt2}2$$
$$cos(frac{180^o}7)=frac{3pmsqrt2}2$$



Since $cos(frac{180^o}7)le1$, we get



$$cos(frac{180^o}7)=frac{3-sqrt2}2$$



But I substituted it to (1), and it doesn't fulfill the equation.



What did I do wrong?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Is this trolling?
    $endgroup$
    – Chase Ryan Taylor
    Dec 25 '18 at 1:24










  • $begingroup$
    @ChaseRyanTaylor I found the mistake when I read the question over.
    $endgroup$
    – user_194421
    Dec 25 '18 at 1:26














2












2








2





$begingroup$


Let $alpha=frac{180^o}7$.



Consider that



$$sin(3alpha)=sin(180^o-3alpha)=sin(4alpha)$$



and



$$cos(3alpha)=-cos(180^o-3alpha)=-cos(4alpha)text{.}$$



From $sin(3alpha)=sin(4alpha)$, we get



$$sin(alpha)cos(2alpha)+sin(2alpha)cos(alpha)=sin(2alpha)cos(2alpha)+sin(2alpha)cos(2alpha)$$
$$cos(2alpha)(sin(alpha)-sin(2alpha))=sin(2alpha)(cos(2alpha)-cos(alpha))$$
$$cos(2alpha)sin(alpha)(1-2cos(alpha))=2sin(alpha)cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=2cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=-2cos^2(alpha)(1-2cos(alpha))-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(1-2cos(alpha))=-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(2cos(alpha)-1)=2cos(alpha)$$
$$(4cos^2(alpha)-1)(2cos(alpha)-1)=2cos(alpha)$$
$$8cos^3(alpha)-4cos^2(alpha)-4cos(alpha)+1=0$$



From $cos(3alpha)=-cos(4alpha)$ we get



$$cos(2alpha)cos(alpha)-sin(2alpha)sin(alpha)=sin(2alpha)sin(2alpha)-cos(2alpha)cos(2alpha)$$
$$cos(2alpha)(cos(2alpha)+cos(alpha))=sin(2alpha)(sin(2alpha)+sin(alpha))$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=sin^2(2alpha)+sin(2alpha)sin(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-cos^2(2alpha)+2sin^2(alpha)cos(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^2(alpha)-4cos(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^2(alpha)+4cos(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+4cos^3(alpha)-7cos(alpha)+1=0$$



Now, let $c=cos(alpha)$. From the previous equations:



$$8c^3-4c^2-4c+1=0 ...(1)$$
$$4c^4+4c^3-7c+1=0 ...(2)$$



Subtract the equations:



$$4c^4-4c^3+4c^2-3c=0$$



Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get



$$4c^3-4c^2+4c-3=0$$
$$8c^3-8c^2+8c-6=0 ...(3)$$



Subtract (3) from (1):



$$4c^2-12c+7=0$$
$$4c^2-12c+9=2$$
$$(2c-3)^2=2$$
$$2c-3=pmsqrt2$$
$$2c=3pmsqrt2$$
$$c=frac{3pmsqrt2}2$$
$$cos(frac{180^o}7)=frac{3pmsqrt2}2$$



Since $cos(frac{180^o}7)le1$, we get



$$cos(frac{180^o}7)=frac{3-sqrt2}2$$



But I substituted it to (1), and it doesn't fulfill the equation.



What did I do wrong?










share|cite|improve this question









$endgroup$




Let $alpha=frac{180^o}7$.



Consider that



$$sin(3alpha)=sin(180^o-3alpha)=sin(4alpha)$$



and



$$cos(3alpha)=-cos(180^o-3alpha)=-cos(4alpha)text{.}$$



From $sin(3alpha)=sin(4alpha)$, we get



$$sin(alpha)cos(2alpha)+sin(2alpha)cos(alpha)=sin(2alpha)cos(2alpha)+sin(2alpha)cos(2alpha)$$
$$cos(2alpha)(sin(alpha)-sin(2alpha))=sin(2alpha)(cos(2alpha)-cos(alpha))$$
$$cos(2alpha)sin(alpha)(1-2cos(alpha))=2sin(alpha)cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=2cos(alpha)(2cos^2(alpha)-cos(alpha)-1)$$
$$cos(2alpha)(1-2cos(alpha))=-2cos^2(alpha)(1-2cos(alpha))-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(1-2cos(alpha))=-2cos(alpha)$$
$$(cos(2alpha)+2cos^2(alpha))(2cos(alpha)-1)=2cos(alpha)$$
$$(4cos^2(alpha)-1)(2cos(alpha)-1)=2cos(alpha)$$
$$8cos^3(alpha)-4cos^2(alpha)-4cos(alpha)+1=0$$



From $cos(3alpha)=-cos(4alpha)$ we get



$$cos(2alpha)cos(alpha)-sin(2alpha)sin(alpha)=sin(2alpha)sin(2alpha)-cos(2alpha)cos(2alpha)$$
$$cos(2alpha)(cos(2alpha)+cos(alpha))=sin(2alpha)(sin(2alpha)+sin(alpha))$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=sin^2(2alpha)+sin(2alpha)sin(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-cos^2(2alpha)+2sin^2(alpha)cos(alpha)$$
$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^2(alpha)-4cos(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^2(alpha)+4cos(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+4cos^3(alpha)-7cos(alpha)+1=0$$



Now, let $c=cos(alpha)$. From the previous equations:



$$8c^3-4c^2-4c+1=0 ...(1)$$
$$4c^4+4c^3-7c+1=0 ...(2)$$



Subtract the equations:



$$4c^4-4c^3+4c^2-3c=0$$



Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get



$$4c^3-4c^2+4c-3=0$$
$$8c^3-8c^2+8c-6=0 ...(3)$$



Subtract (3) from (1):



$$4c^2-12c+7=0$$
$$4c^2-12c+9=2$$
$$(2c-3)^2=2$$
$$2c-3=pmsqrt2$$
$$2c=3pmsqrt2$$
$$c=frac{3pmsqrt2}2$$
$$cos(frac{180^o}7)=frac{3pmsqrt2}2$$



Since $cos(frac{180^o}7)le1$, we get



$$cos(frac{180^o}7)=frac{3-sqrt2}2$$



But I substituted it to (1), and it doesn't fulfill the equation.



What did I do wrong?







trigonometry






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 25 '18 at 1:02









user_194421user_194421

962316




962316








  • 1




    $begingroup$
    Is this trolling?
    $endgroup$
    – Chase Ryan Taylor
    Dec 25 '18 at 1:24










  • $begingroup$
    @ChaseRyanTaylor I found the mistake when I read the question over.
    $endgroup$
    – user_194421
    Dec 25 '18 at 1:26














  • 1




    $begingroup$
    Is this trolling?
    $endgroup$
    – Chase Ryan Taylor
    Dec 25 '18 at 1:24










  • $begingroup$
    @ChaseRyanTaylor I found the mistake when I read the question over.
    $endgroup$
    – user_194421
    Dec 25 '18 at 1:26








1




1




$begingroup$
Is this trolling?
$endgroup$
– Chase Ryan Taylor
Dec 25 '18 at 1:24




$begingroup$
Is this trolling?
$endgroup$
– Chase Ryan Taylor
Dec 25 '18 at 1:24












$begingroup$
@ChaseRyanTaylor I found the mistake when I read the question over.
$endgroup$
– user_194421
Dec 25 '18 at 1:26




$begingroup$
@ChaseRyanTaylor I found the mistake when I read the question over.
$endgroup$
– user_194421
Dec 25 '18 at 1:26










1 Answer
1






active

oldest

votes


















2












$begingroup$

In the fifth line of the argument from $cos(3alpha)=-cos(4alpha)$, I made the mistake of turning $cos(2alpha)$ to $2cos(alpha)-1$, instead of the correct $2cos^2(alpha)-1$.



Now let's carry on, fixing the mistake:



$$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos^2(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^4(alpha)-4cos^2(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
$$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^4(alpha)+4cos^2(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
$$8cos^4(alpha)+4cos^3(alpha)-8cos^2(alpha)-3cos(alpha)+1=0$$



Now, let $c=cos(alpha)$. From the previous equations:



$$8c^3-4c^2-4c+1=0 ...(1)$$
$$8c^4+4c^3-8c^2-3c+1=0 ...(2)$$



Subtract (1) from (2):



$$8c^4-4c^3-4c^2+c=0$$



Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get



$$8c^3-4c^2-4c+1=0 ...(1)$$



I can't go further, so the value to find is the root of that equation which is in the interval $(0,1)$ (only one).






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051755%2ffinding-the-value-of-cos-frac180o7-where-am-i-wrong%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    In the fifth line of the argument from $cos(3alpha)=-cos(4alpha)$, I made the mistake of turning $cos(2alpha)$ to $2cos(alpha)-1$, instead of the correct $2cos^2(alpha)-1$.



    Now let's carry on, fixing the mistake:



    $$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos^2(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
    $$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^4(alpha)-4cos^2(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
    $$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^4(alpha)+4cos^2(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
    $$8cos^4(alpha)+4cos^3(alpha)-8cos^2(alpha)-3cos(alpha)+1=0$$



    Now, let $c=cos(alpha)$. From the previous equations:



    $$8c^3-4c^2-4c+1=0 ...(1)$$
    $$8c^4+4c^3-8c^2-3c+1=0 ...(2)$$



    Subtract (1) from (2):



    $$8c^4-4c^3-4c^2+c=0$$



    Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get



    $$8c^3-4c^2-4c+1=0 ...(1)$$



    I can't go further, so the value to find is the root of that equation which is in the interval $(0,1)$ (only one).






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      In the fifth line of the argument from $cos(3alpha)=-cos(4alpha)$, I made the mistake of turning $cos(2alpha)$ to $2cos(alpha)-1$, instead of the correct $2cos^2(alpha)-1$.



      Now let's carry on, fixing the mistake:



      $$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos^2(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
      $$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^4(alpha)-4cos^2(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
      $$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^4(alpha)+4cos^2(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
      $$8cos^4(alpha)+4cos^3(alpha)-8cos^2(alpha)-3cos(alpha)+1=0$$



      Now, let $c=cos(alpha)$. From the previous equations:



      $$8c^3-4c^2-4c+1=0 ...(1)$$
      $$8c^4+4c^3-8c^2-3c+1=0 ...(2)$$



      Subtract (1) from (2):



      $$8c^4-4c^3-4c^2+c=0$$



      Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get



      $$8c^3-4c^2-4c+1=0 ...(1)$$



      I can't go further, so the value to find is the root of that equation which is in the interval $(0,1)$ (only one).






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        In the fifth line of the argument from $cos(3alpha)=-cos(4alpha)$, I made the mistake of turning $cos(2alpha)$ to $2cos(alpha)-1$, instead of the correct $2cos^2(alpha)-1$.



        Now let's carry on, fixing the mistake:



        $$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos^2(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
        $$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^4(alpha)-4cos^2(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
        $$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^4(alpha)+4cos^2(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
        $$8cos^4(alpha)+4cos^3(alpha)-8cos^2(alpha)-3cos(alpha)+1=0$$



        Now, let $c=cos(alpha)$. From the previous equations:



        $$8c^3-4c^2-4c+1=0 ...(1)$$
        $$8c^4+4c^3-8c^2-3c+1=0 ...(2)$$



        Subtract (1) from (2):



        $$8c^4-4c^3-4c^2+c=0$$



        Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get



        $$8c^3-4c^2-4c+1=0 ...(1)$$



        I can't go further, so the value to find is the root of that equation which is in the interval $(0,1)$ (only one).






        share|cite|improve this answer











        $endgroup$



        In the fifth line of the argument from $cos(3alpha)=-cos(4alpha)$, I made the mistake of turning $cos(2alpha)$ to $2cos(alpha)-1$, instead of the correct $2cos^2(alpha)-1$.



        Now let's carry on, fixing the mistake:



        $$(2cos^2(alpha)-1)(2cos^2(alpha)+cos(alpha)-1)=1-(2cos^2(alpha)-1)^2+2(1-cos^2(alpha))cos(alpha)$$
        $$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)+1=1-(4cos^4(alpha)-4cos^2(alpha)+1)+2cos(alpha)-2cos^3(alpha)$$
        $$4cos^4(alpha)+2cos^3(alpha)-4cos^2(alpha)-cos(alpha)=-4cos^4(alpha)+4cos^2(alpha)-1+2cos(alpha)-2cos^3(alpha)$$
        $$8cos^4(alpha)+4cos^3(alpha)-8cos^2(alpha)-3cos(alpha)+1=0$$



        Now, let $c=cos(alpha)$. From the previous equations:



        $$8c^3-4c^2-4c+1=0 ...(1)$$
        $$8c^4+4c^3-8c^2-3c+1=0 ...(2)$$



        Subtract (1) from (2):



        $$8c^4-4c^3-4c^2+c=0$$



        Since $c$ cannot be $0$ ($c=0$ doesn't fulfill (1)), we get



        $$8c^3-4c^2-4c+1=0 ...(1)$$



        I can't go further, so the value to find is the root of that equation which is in the interval $(0,1)$ (only one).







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 25 '18 at 1:24

























        answered Dec 25 '18 at 1:02









        user_194421user_194421

        962316




        962316






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051755%2ffinding-the-value-of-cos-frac180o7-where-am-i-wrong%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen