Surface integral of position vector over a sphere
$begingroup$
$iint_S$ r.n $dS$
Over the surface of the sphere with radius $a$ centered at the origin
Now this is obviously trivial and the answer is $4pi a^3$ but I want to do it the hard way because there's something I don't understand
The surface is $x^2 + y^2 + z^2 = a^2$ , then the normal vector $n = nabla S$
$hat n$ = $frac{nabla S}{|nabla S|}$ = $frac{x hat i + y hat j + z hat k}{a}$
$dS = frac{dxdy}{|hat n . hat k|} = frac{dxdy}{a/z}$
Then $iint_S$ r.n $dS$ = $iint_S frac{x^2 + y^2}{sqrt{a^2 -x^2 -y^2}} + sqrt{a^2 -y^2 -x^2}$ $dxdy$
Switching to polar coordinates, $x=rho cosphi , y =rho sinphi$
Then $iint_S$ r.n $dS$ = $iint_S frac{rho^2}{sqrt{a^2 -rho^2}} + sqrt{a^2 - rho^2}$ $rho drho dphi$
Integrating $rho$ from $0$ to $a$ and $phi$ from $0$ to $2pi$ , we get:
$iint_S$ r.n $dS$ = $2pi a^3$ which is half the required answer $4pi a^3$ , is it because I only took into account that $dS = frac{dxdy}{|hat n . hat k|} = frac{dxdy}{a/z}$ and should have changed this surface element starting from a specific point? If so, how? Thanks
vector-analysis surface-integrals
$endgroup$
add a comment |
$begingroup$
$iint_S$ r.n $dS$
Over the surface of the sphere with radius $a$ centered at the origin
Now this is obviously trivial and the answer is $4pi a^3$ but I want to do it the hard way because there's something I don't understand
The surface is $x^2 + y^2 + z^2 = a^2$ , then the normal vector $n = nabla S$
$hat n$ = $frac{nabla S}{|nabla S|}$ = $frac{x hat i + y hat j + z hat k}{a}$
$dS = frac{dxdy}{|hat n . hat k|} = frac{dxdy}{a/z}$
Then $iint_S$ r.n $dS$ = $iint_S frac{x^2 + y^2}{sqrt{a^2 -x^2 -y^2}} + sqrt{a^2 -y^2 -x^2}$ $dxdy$
Switching to polar coordinates, $x=rho cosphi , y =rho sinphi$
Then $iint_S$ r.n $dS$ = $iint_S frac{rho^2}{sqrt{a^2 -rho^2}} + sqrt{a^2 - rho^2}$ $rho drho dphi$
Integrating $rho$ from $0$ to $a$ and $phi$ from $0$ to $2pi$ , we get:
$iint_S$ r.n $dS$ = $2pi a^3$ which is half the required answer $4pi a^3$ , is it because I only took into account that $dS = frac{dxdy}{|hat n . hat k|} = frac{dxdy}{a/z}$ and should have changed this surface element starting from a specific point? If so, how? Thanks
vector-analysis surface-integrals
$endgroup$
$begingroup$
When you take the square root, aren’t you only giving the correct value of $z$ in upper half space?
$endgroup$
– Charlie Frohman
Dec 25 '18 at 2:10
$begingroup$
Yes, but didn't I integrate from 0 to $2pi$ anyway?
$endgroup$
– khaled014z
Dec 25 '18 at 2:25
1
$begingroup$
This seems to be full of errors. Why are you varying $rho$. It's constant, you're on a sphere. The surface element should be $a^2sinthetaoperatorname dthetaoperatorname dvarphi $. You need spherical coordinates, not polar. Etc...
$endgroup$
– Chris Custer
Dec 25 '18 at 3:07
add a comment |
$begingroup$
$iint_S$ r.n $dS$
Over the surface of the sphere with radius $a$ centered at the origin
Now this is obviously trivial and the answer is $4pi a^3$ but I want to do it the hard way because there's something I don't understand
The surface is $x^2 + y^2 + z^2 = a^2$ , then the normal vector $n = nabla S$
$hat n$ = $frac{nabla S}{|nabla S|}$ = $frac{x hat i + y hat j + z hat k}{a}$
$dS = frac{dxdy}{|hat n . hat k|} = frac{dxdy}{a/z}$
Then $iint_S$ r.n $dS$ = $iint_S frac{x^2 + y^2}{sqrt{a^2 -x^2 -y^2}} + sqrt{a^2 -y^2 -x^2}$ $dxdy$
Switching to polar coordinates, $x=rho cosphi , y =rho sinphi$
Then $iint_S$ r.n $dS$ = $iint_S frac{rho^2}{sqrt{a^2 -rho^2}} + sqrt{a^2 - rho^2}$ $rho drho dphi$
Integrating $rho$ from $0$ to $a$ and $phi$ from $0$ to $2pi$ , we get:
$iint_S$ r.n $dS$ = $2pi a^3$ which is half the required answer $4pi a^3$ , is it because I only took into account that $dS = frac{dxdy}{|hat n . hat k|} = frac{dxdy}{a/z}$ and should have changed this surface element starting from a specific point? If so, how? Thanks
vector-analysis surface-integrals
$endgroup$
$iint_S$ r.n $dS$
Over the surface of the sphere with radius $a$ centered at the origin
Now this is obviously trivial and the answer is $4pi a^3$ but I want to do it the hard way because there's something I don't understand
The surface is $x^2 + y^2 + z^2 = a^2$ , then the normal vector $n = nabla S$
$hat n$ = $frac{nabla S}{|nabla S|}$ = $frac{x hat i + y hat j + z hat k}{a}$
$dS = frac{dxdy}{|hat n . hat k|} = frac{dxdy}{a/z}$
Then $iint_S$ r.n $dS$ = $iint_S frac{x^2 + y^2}{sqrt{a^2 -x^2 -y^2}} + sqrt{a^2 -y^2 -x^2}$ $dxdy$
Switching to polar coordinates, $x=rho cosphi , y =rho sinphi$
Then $iint_S$ r.n $dS$ = $iint_S frac{rho^2}{sqrt{a^2 -rho^2}} + sqrt{a^2 - rho^2}$ $rho drho dphi$
Integrating $rho$ from $0$ to $a$ and $phi$ from $0$ to $2pi$ , we get:
$iint_S$ r.n $dS$ = $2pi a^3$ which is half the required answer $4pi a^3$ , is it because I only took into account that $dS = frac{dxdy}{|hat n . hat k|} = frac{dxdy}{a/z}$ and should have changed this surface element starting from a specific point? If so, how? Thanks
vector-analysis surface-integrals
vector-analysis surface-integrals
asked Dec 25 '18 at 1:26
khaled014zkhaled014z
1769
1769
$begingroup$
When you take the square root, aren’t you only giving the correct value of $z$ in upper half space?
$endgroup$
– Charlie Frohman
Dec 25 '18 at 2:10
$begingroup$
Yes, but didn't I integrate from 0 to $2pi$ anyway?
$endgroup$
– khaled014z
Dec 25 '18 at 2:25
1
$begingroup$
This seems to be full of errors. Why are you varying $rho$. It's constant, you're on a sphere. The surface element should be $a^2sinthetaoperatorname dthetaoperatorname dvarphi $. You need spherical coordinates, not polar. Etc...
$endgroup$
– Chris Custer
Dec 25 '18 at 3:07
add a comment |
$begingroup$
When you take the square root, aren’t you only giving the correct value of $z$ in upper half space?
$endgroup$
– Charlie Frohman
Dec 25 '18 at 2:10
$begingroup$
Yes, but didn't I integrate from 0 to $2pi$ anyway?
$endgroup$
– khaled014z
Dec 25 '18 at 2:25
1
$begingroup$
This seems to be full of errors. Why are you varying $rho$. It's constant, you're on a sphere. The surface element should be $a^2sinthetaoperatorname dthetaoperatorname dvarphi $. You need spherical coordinates, not polar. Etc...
$endgroup$
– Chris Custer
Dec 25 '18 at 3:07
$begingroup$
When you take the square root, aren’t you only giving the correct value of $z$ in upper half space?
$endgroup$
– Charlie Frohman
Dec 25 '18 at 2:10
$begingroup$
When you take the square root, aren’t you only giving the correct value of $z$ in upper half space?
$endgroup$
– Charlie Frohman
Dec 25 '18 at 2:10
$begingroup$
Yes, but didn't I integrate from 0 to $2pi$ anyway?
$endgroup$
– khaled014z
Dec 25 '18 at 2:25
$begingroup$
Yes, but didn't I integrate from 0 to $2pi$ anyway?
$endgroup$
– khaled014z
Dec 25 '18 at 2:25
1
1
$begingroup$
This seems to be full of errors. Why are you varying $rho$. It's constant, you're on a sphere. The surface element should be $a^2sinthetaoperatorname dthetaoperatorname dvarphi $. You need spherical coordinates, not polar. Etc...
$endgroup$
– Chris Custer
Dec 25 '18 at 3:07
$begingroup$
This seems to be full of errors. Why are you varying $rho$. It's constant, you're on a sphere. The surface element should be $a^2sinthetaoperatorname dthetaoperatorname dvarphi $. You need spherical coordinates, not polar. Etc...
$endgroup$
– Chris Custer
Dec 25 '18 at 3:07
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
notice that
$$vec r cdot vec n = frac{x^2+y^2+z^2} a = frac {a^2} a = a$$
which is a constant so can be taken outside the integral
so
$$iint_S vec r cdot vec n ;dS = a iint_S ;dS $$
$endgroup$
add a comment |
$begingroup$
You get $aintintoperatorname dS=aintint a^2sinthetaoperatorname dthetaoperatorname dvarphi=a^3int_0^{2pi}int_0^{pi}sinthetaoperatorname dthetaoperatorname dvarphi=2pi a^3[-costheta]_0^{pi}=4pi a^3$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051762%2fsurface-integral-of-position-vector-over-a-sphere%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
notice that
$$vec r cdot vec n = frac{x^2+y^2+z^2} a = frac {a^2} a = a$$
which is a constant so can be taken outside the integral
so
$$iint_S vec r cdot vec n ;dS = a iint_S ;dS $$
$endgroup$
add a comment |
$begingroup$
notice that
$$vec r cdot vec n = frac{x^2+y^2+z^2} a = frac {a^2} a = a$$
which is a constant so can be taken outside the integral
so
$$iint_S vec r cdot vec n ;dS = a iint_S ;dS $$
$endgroup$
add a comment |
$begingroup$
notice that
$$vec r cdot vec n = frac{x^2+y^2+z^2} a = frac {a^2} a = a$$
which is a constant so can be taken outside the integral
so
$$iint_S vec r cdot vec n ;dS = a iint_S ;dS $$
$endgroup$
notice that
$$vec r cdot vec n = frac{x^2+y^2+z^2} a = frac {a^2} a = a$$
which is a constant so can be taken outside the integral
so
$$iint_S vec r cdot vec n ;dS = a iint_S ;dS $$
answered Dec 25 '18 at 3:24
WW1WW1
7,3251712
7,3251712
add a comment |
add a comment |
$begingroup$
You get $aintintoperatorname dS=aintint a^2sinthetaoperatorname dthetaoperatorname dvarphi=a^3int_0^{2pi}int_0^{pi}sinthetaoperatorname dthetaoperatorname dvarphi=2pi a^3[-costheta]_0^{pi}=4pi a^3$.
$endgroup$
add a comment |
$begingroup$
You get $aintintoperatorname dS=aintint a^2sinthetaoperatorname dthetaoperatorname dvarphi=a^3int_0^{2pi}int_0^{pi}sinthetaoperatorname dthetaoperatorname dvarphi=2pi a^3[-costheta]_0^{pi}=4pi a^3$.
$endgroup$
add a comment |
$begingroup$
You get $aintintoperatorname dS=aintint a^2sinthetaoperatorname dthetaoperatorname dvarphi=a^3int_0^{2pi}int_0^{pi}sinthetaoperatorname dthetaoperatorname dvarphi=2pi a^3[-costheta]_0^{pi}=4pi a^3$.
$endgroup$
You get $aintintoperatorname dS=aintint a^2sinthetaoperatorname dthetaoperatorname dvarphi=a^3int_0^{2pi}int_0^{pi}sinthetaoperatorname dthetaoperatorname dvarphi=2pi a^3[-costheta]_0^{pi}=4pi a^3$.
answered Dec 25 '18 at 3:39
Chris CusterChris Custer
14.2k3827
14.2k3827
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051762%2fsurface-integral-of-position-vector-over-a-sphere%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
When you take the square root, aren’t you only giving the correct value of $z$ in upper half space?
$endgroup$
– Charlie Frohman
Dec 25 '18 at 2:10
$begingroup$
Yes, but didn't I integrate from 0 to $2pi$ anyway?
$endgroup$
– khaled014z
Dec 25 '18 at 2:25
1
$begingroup$
This seems to be full of errors. Why are you varying $rho$. It's constant, you're on a sphere. The surface element should be $a^2sinthetaoperatorname dthetaoperatorname dvarphi $. You need spherical coordinates, not polar. Etc...
$endgroup$
– Chris Custer
Dec 25 '18 at 3:07