Problem understanding the math in HyperLogLog












1












$begingroup$


I have problem understanding how the math works in the hyperloglog algorithm. More specifically, I have trouble seeing how the author get formula 5 from formula 4, in the HyperLogLog paper, page 132.



The formula 4 says



$mathbb{E}_n(Z) = sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1+...+n_m=n}begin{pmatrix}n\n_1,...,n_mend{pmatrix}frac{1}{m^n}prod_{j=1}^mgamma_{n_j,k_j}$, where $gamma_{n_j,k_j} = (1-frac{1}{2^{k_j}})^{n_j}-(1-frac{1}{2^{k_j-1}})^{n_j}$



Then the paper assumes $n$ satisfies Poisson distribution of rate $lambda$, $mathbb{P}(N=n) = e^{-lambda}frac{lambda^n}{n!}$, and get formula 5



$mathbb{E}_{P(lambda)}(Z) = sum_{ngeq 0}mathbb{E}_n(Z)e^{-lambda}frac{lambda^n}{n!}=sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^mg(frac{lambda}{m2^{k_j}})$, where $g(x) = e^{-x}-e^{-2x}$.



The paper says it is obtained by simple series rearrangements. However I fail to understand how this is done. Any help is greatly appreciated!










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I have problem understanding how the math works in the hyperloglog algorithm. More specifically, I have trouble seeing how the author get formula 5 from formula 4, in the HyperLogLog paper, page 132.



    The formula 4 says



    $mathbb{E}_n(Z) = sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1+...+n_m=n}begin{pmatrix}n\n_1,...,n_mend{pmatrix}frac{1}{m^n}prod_{j=1}^mgamma_{n_j,k_j}$, where $gamma_{n_j,k_j} = (1-frac{1}{2^{k_j}})^{n_j}-(1-frac{1}{2^{k_j-1}})^{n_j}$



    Then the paper assumes $n$ satisfies Poisson distribution of rate $lambda$, $mathbb{P}(N=n) = e^{-lambda}frac{lambda^n}{n!}$, and get formula 5



    $mathbb{E}_{P(lambda)}(Z) = sum_{ngeq 0}mathbb{E}_n(Z)e^{-lambda}frac{lambda^n}{n!}=sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^mg(frac{lambda}{m2^{k_j}})$, where $g(x) = e^{-x}-e^{-2x}$.



    The paper says it is obtained by simple series rearrangements. However I fail to understand how this is done. Any help is greatly appreciated!










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I have problem understanding how the math works in the hyperloglog algorithm. More specifically, I have trouble seeing how the author get formula 5 from formula 4, in the HyperLogLog paper, page 132.



      The formula 4 says



      $mathbb{E}_n(Z) = sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1+...+n_m=n}begin{pmatrix}n\n_1,...,n_mend{pmatrix}frac{1}{m^n}prod_{j=1}^mgamma_{n_j,k_j}$, where $gamma_{n_j,k_j} = (1-frac{1}{2^{k_j}})^{n_j}-(1-frac{1}{2^{k_j-1}})^{n_j}$



      Then the paper assumes $n$ satisfies Poisson distribution of rate $lambda$, $mathbb{P}(N=n) = e^{-lambda}frac{lambda^n}{n!}$, and get formula 5



      $mathbb{E}_{P(lambda)}(Z) = sum_{ngeq 0}mathbb{E}_n(Z)e^{-lambda}frac{lambda^n}{n!}=sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^mg(frac{lambda}{m2^{k_j}})$, where $g(x) = e^{-x}-e^{-2x}$.



      The paper says it is obtained by simple series rearrangements. However I fail to understand how this is done. Any help is greatly appreciated!










      share|cite|improve this question









      $endgroup$




      I have problem understanding how the math works in the hyperloglog algorithm. More specifically, I have trouble seeing how the author get formula 5 from formula 4, in the HyperLogLog paper, page 132.



      The formula 4 says



      $mathbb{E}_n(Z) = sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1+...+n_m=n}begin{pmatrix}n\n_1,...,n_mend{pmatrix}frac{1}{m^n}prod_{j=1}^mgamma_{n_j,k_j}$, where $gamma_{n_j,k_j} = (1-frac{1}{2^{k_j}})^{n_j}-(1-frac{1}{2^{k_j-1}})^{n_j}$



      Then the paper assumes $n$ satisfies Poisson distribution of rate $lambda$, $mathbb{P}(N=n) = e^{-lambda}frac{lambda^n}{n!}$, and get formula 5



      $mathbb{E}_{P(lambda)}(Z) = sum_{ngeq 0}mathbb{E}_n(Z)e^{-lambda}frac{lambda^n}{n!}=sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^mg(frac{lambda}{m2^{k_j}})$, where $g(x) = e^{-x}-e^{-2x}$.



      The paper says it is obtained by simple series rearrangements. However I fail to understand how this is done. Any help is greatly appreciated!







      probability-distributions poisson-distribution






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 22 '18 at 19:33









      HarperHarper

      1955




      1955






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Here is the derivation which uses the identity $e^x = sum_{ngeq 0} frac{x^n}{n!}$:



          begin{aligned}
          mathbb{E}_{P(lambda)}(Z) &= sum_{ngeq 0}e^{-lambda}frac{lambda^n}{n!}mathbb{E}_n(Z)
          \
          &=
          sum_{ngeq 0}e^{-lambda}frac{lambda^n}{n!}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1+...+n_m=n}begin{pmatrix}n\n_1,...,n_mend{pmatrix}frac{1}{m^n}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{ngeq 0}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1+...+n_m=n}frac{lambda^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}frac{1}{m^n}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{ngeq 0}sum_{n_1+...+n_m=n}frac{left(frac{lambda}{m}right)^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1geq 0}sum_{n_2geq 0}cdotssum_{n_mgeq 0}frac{left(frac{lambda}{m}right)^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^msum_{n_jgeq 0}frac{left(frac{lambda}{m}right)^{n_j}}{n_j!}gamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^msum_{n_jgeq 0}frac{left(frac{lambda}{m}right)^{n_j}}{n_j!}left((1-frac{1}{2^{k_j}})^{n_j}-(1-frac{1}{2^{k_j-1}})^{n_j}right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          left(
          sum_{n_jgeq 0}frac{left(frac{lambda}{m}(1-frac{1}{2^{k_j}})right)^{n_j}}{n_j!}right)
          -
          left(
          sum_{n_jgeq 0}frac{left(frac{lambda}{m}(1-frac{1}{2^{k_j-1}})right)^{n_j}}{n_j!}right)
          right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          e^{frac{lambda}{m}left(1-frac{1}{2^{k_j}}right)}
          -
          e^{frac{lambda}{m}left(1-frac{1}{2^{k_j-1}}right)}
          right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          e^frac{lambda}{m}left(
          e^{-frac{lambda}{m 2^{k_j}}}
          -
          e^{-frac{lambda}{m 2^{k_j-1}}}
          right)
          \
          &=
          sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          e^{-frac{lambda}{m 2^{k_j}}}
          -
          e^{-frac{lambda}{m 2^{k_j-1}}}
          right)
          \
          &=
          sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^mg(frac{lambda}{m2^{k_j}})
          end{aligned}



          By the way, a simpler derivation of the HyperLogLog algorithm that does not involve complex analysis can be found in my paper https://arxiv.org/pdf/1702.01284.pdf.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Fantastic and thank you! I now understand how the derivation works and am reading your paper.
            $endgroup$
            – Harper
            Dec 26 '18 at 19:53











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049773%2fproblem-understanding-the-math-in-hyperloglog%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Here is the derivation which uses the identity $e^x = sum_{ngeq 0} frac{x^n}{n!}$:



          begin{aligned}
          mathbb{E}_{P(lambda)}(Z) &= sum_{ngeq 0}e^{-lambda}frac{lambda^n}{n!}mathbb{E}_n(Z)
          \
          &=
          sum_{ngeq 0}e^{-lambda}frac{lambda^n}{n!}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1+...+n_m=n}begin{pmatrix}n\n_1,...,n_mend{pmatrix}frac{1}{m^n}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{ngeq 0}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1+...+n_m=n}frac{lambda^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}frac{1}{m^n}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{ngeq 0}sum_{n_1+...+n_m=n}frac{left(frac{lambda}{m}right)^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1geq 0}sum_{n_2geq 0}cdotssum_{n_mgeq 0}frac{left(frac{lambda}{m}right)^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^msum_{n_jgeq 0}frac{left(frac{lambda}{m}right)^{n_j}}{n_j!}gamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^msum_{n_jgeq 0}frac{left(frac{lambda}{m}right)^{n_j}}{n_j!}left((1-frac{1}{2^{k_j}})^{n_j}-(1-frac{1}{2^{k_j-1}})^{n_j}right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          left(
          sum_{n_jgeq 0}frac{left(frac{lambda}{m}(1-frac{1}{2^{k_j}})right)^{n_j}}{n_j!}right)
          -
          left(
          sum_{n_jgeq 0}frac{left(frac{lambda}{m}(1-frac{1}{2^{k_j-1}})right)^{n_j}}{n_j!}right)
          right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          e^{frac{lambda}{m}left(1-frac{1}{2^{k_j}}right)}
          -
          e^{frac{lambda}{m}left(1-frac{1}{2^{k_j-1}}right)}
          right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          e^frac{lambda}{m}left(
          e^{-frac{lambda}{m 2^{k_j}}}
          -
          e^{-frac{lambda}{m 2^{k_j-1}}}
          right)
          \
          &=
          sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          e^{-frac{lambda}{m 2^{k_j}}}
          -
          e^{-frac{lambda}{m 2^{k_j-1}}}
          right)
          \
          &=
          sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^mg(frac{lambda}{m2^{k_j}})
          end{aligned}



          By the way, a simpler derivation of the HyperLogLog algorithm that does not involve complex analysis can be found in my paper https://arxiv.org/pdf/1702.01284.pdf.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Fantastic and thank you! I now understand how the derivation works and am reading your paper.
            $endgroup$
            – Harper
            Dec 26 '18 at 19:53
















          1












          $begingroup$

          Here is the derivation which uses the identity $e^x = sum_{ngeq 0} frac{x^n}{n!}$:



          begin{aligned}
          mathbb{E}_{P(lambda)}(Z) &= sum_{ngeq 0}e^{-lambda}frac{lambda^n}{n!}mathbb{E}_n(Z)
          \
          &=
          sum_{ngeq 0}e^{-lambda}frac{lambda^n}{n!}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1+...+n_m=n}begin{pmatrix}n\n_1,...,n_mend{pmatrix}frac{1}{m^n}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{ngeq 0}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1+...+n_m=n}frac{lambda^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}frac{1}{m^n}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{ngeq 0}sum_{n_1+...+n_m=n}frac{left(frac{lambda}{m}right)^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1geq 0}sum_{n_2geq 0}cdotssum_{n_mgeq 0}frac{left(frac{lambda}{m}right)^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^msum_{n_jgeq 0}frac{left(frac{lambda}{m}right)^{n_j}}{n_j!}gamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^msum_{n_jgeq 0}frac{left(frac{lambda}{m}right)^{n_j}}{n_j!}left((1-frac{1}{2^{k_j}})^{n_j}-(1-frac{1}{2^{k_j-1}})^{n_j}right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          left(
          sum_{n_jgeq 0}frac{left(frac{lambda}{m}(1-frac{1}{2^{k_j}})right)^{n_j}}{n_j!}right)
          -
          left(
          sum_{n_jgeq 0}frac{left(frac{lambda}{m}(1-frac{1}{2^{k_j-1}})right)^{n_j}}{n_j!}right)
          right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          e^{frac{lambda}{m}left(1-frac{1}{2^{k_j}}right)}
          -
          e^{frac{lambda}{m}left(1-frac{1}{2^{k_j-1}}right)}
          right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          e^frac{lambda}{m}left(
          e^{-frac{lambda}{m 2^{k_j}}}
          -
          e^{-frac{lambda}{m 2^{k_j-1}}}
          right)
          \
          &=
          sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          e^{-frac{lambda}{m 2^{k_j}}}
          -
          e^{-frac{lambda}{m 2^{k_j-1}}}
          right)
          \
          &=
          sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^mg(frac{lambda}{m2^{k_j}})
          end{aligned}



          By the way, a simpler derivation of the HyperLogLog algorithm that does not involve complex analysis can be found in my paper https://arxiv.org/pdf/1702.01284.pdf.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Fantastic and thank you! I now understand how the derivation works and am reading your paper.
            $endgroup$
            – Harper
            Dec 26 '18 at 19:53














          1












          1








          1





          $begingroup$

          Here is the derivation which uses the identity $e^x = sum_{ngeq 0} frac{x^n}{n!}$:



          begin{aligned}
          mathbb{E}_{P(lambda)}(Z) &= sum_{ngeq 0}e^{-lambda}frac{lambda^n}{n!}mathbb{E}_n(Z)
          \
          &=
          sum_{ngeq 0}e^{-lambda}frac{lambda^n}{n!}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1+...+n_m=n}begin{pmatrix}n\n_1,...,n_mend{pmatrix}frac{1}{m^n}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{ngeq 0}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1+...+n_m=n}frac{lambda^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}frac{1}{m^n}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{ngeq 0}sum_{n_1+...+n_m=n}frac{left(frac{lambda}{m}right)^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1geq 0}sum_{n_2geq 0}cdotssum_{n_mgeq 0}frac{left(frac{lambda}{m}right)^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^msum_{n_jgeq 0}frac{left(frac{lambda}{m}right)^{n_j}}{n_j!}gamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^msum_{n_jgeq 0}frac{left(frac{lambda}{m}right)^{n_j}}{n_j!}left((1-frac{1}{2^{k_j}})^{n_j}-(1-frac{1}{2^{k_j-1}})^{n_j}right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          left(
          sum_{n_jgeq 0}frac{left(frac{lambda}{m}(1-frac{1}{2^{k_j}})right)^{n_j}}{n_j!}right)
          -
          left(
          sum_{n_jgeq 0}frac{left(frac{lambda}{m}(1-frac{1}{2^{k_j-1}})right)^{n_j}}{n_j!}right)
          right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          e^{frac{lambda}{m}left(1-frac{1}{2^{k_j}}right)}
          -
          e^{frac{lambda}{m}left(1-frac{1}{2^{k_j-1}}right)}
          right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          e^frac{lambda}{m}left(
          e^{-frac{lambda}{m 2^{k_j}}}
          -
          e^{-frac{lambda}{m 2^{k_j-1}}}
          right)
          \
          &=
          sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          e^{-frac{lambda}{m 2^{k_j}}}
          -
          e^{-frac{lambda}{m 2^{k_j-1}}}
          right)
          \
          &=
          sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^mg(frac{lambda}{m2^{k_j}})
          end{aligned}



          By the way, a simpler derivation of the HyperLogLog algorithm that does not involve complex analysis can be found in my paper https://arxiv.org/pdf/1702.01284.pdf.






          share|cite|improve this answer









          $endgroup$



          Here is the derivation which uses the identity $e^x = sum_{ngeq 0} frac{x^n}{n!}$:



          begin{aligned}
          mathbb{E}_{P(lambda)}(Z) &= sum_{ngeq 0}e^{-lambda}frac{lambda^n}{n!}mathbb{E}_n(Z)
          \
          &=
          sum_{ngeq 0}e^{-lambda}frac{lambda^n}{n!}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1+...+n_m=n}begin{pmatrix}n\n_1,...,n_mend{pmatrix}frac{1}{m^n}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{ngeq 0}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1+...+n_m=n}frac{lambda^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}frac{1}{m^n}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{ngeq 0}sum_{n_1+...+n_m=n}frac{left(frac{lambda}{m}right)^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}sum_{n_1geq 0}sum_{n_2geq 0}cdotssum_{n_mgeq 0}frac{left(frac{lambda}{m}right)^{n_1+n_2+cdots n_m}}{n_1!n_2!cdots n_m!}prod_{j=1}^mgamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^msum_{n_jgeq 0}frac{left(frac{lambda}{m}right)^{n_j}}{n_j!}gamma_{n_j,k_j}
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^msum_{n_jgeq 0}frac{left(frac{lambda}{m}right)^{n_j}}{n_j!}left((1-frac{1}{2^{k_j}})^{n_j}-(1-frac{1}{2^{k_j-1}})^{n_j}right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          left(
          sum_{n_jgeq 0}frac{left(frac{lambda}{m}(1-frac{1}{2^{k_j}})right)^{n_j}}{n_j!}right)
          -
          left(
          sum_{n_jgeq 0}frac{left(frac{lambda}{m}(1-frac{1}{2^{k_j-1}})right)^{n_j}}{n_j!}right)
          right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          e^{frac{lambda}{m}left(1-frac{1}{2^{k_j}}right)}
          -
          e^{frac{lambda}{m}left(1-frac{1}{2^{k_j-1}}right)}
          right)
          \
          &=
          e^{-lambda}sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          e^frac{lambda}{m}left(
          e^{-frac{lambda}{m 2^{k_j}}}
          -
          e^{-frac{lambda}{m 2^{k_j-1}}}
          right)
          \
          &=
          sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^m
          left(
          e^{-frac{lambda}{m 2^{k_j}}}
          -
          e^{-frac{lambda}{m 2^{k_j-1}}}
          right)
          \
          &=
          sum_{k_1,...,k_mgeq 1}frac{1}{sum_{j=1}^m2^{-k_j}}prod_{j=1}^mg(frac{lambda}{m2^{k_j}})
          end{aligned}



          By the way, a simpler derivation of the HyperLogLog algorithm that does not involve complex analysis can be found in my paper https://arxiv.org/pdf/1702.01284.pdf.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 24 '18 at 14:42









          otmarotmar

          13810




          13810












          • $begingroup$
            Fantastic and thank you! I now understand how the derivation works and am reading your paper.
            $endgroup$
            – Harper
            Dec 26 '18 at 19:53


















          • $begingroup$
            Fantastic and thank you! I now understand how the derivation works and am reading your paper.
            $endgroup$
            – Harper
            Dec 26 '18 at 19:53
















          $begingroup$
          Fantastic and thank you! I now understand how the derivation works and am reading your paper.
          $endgroup$
          – Harper
          Dec 26 '18 at 19:53




          $begingroup$
          Fantastic and thank you! I now understand how the derivation works and am reading your paper.
          $endgroup$
          – Harper
          Dec 26 '18 at 19:53


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049773%2fproblem-understanding-the-math-in-hyperloglog%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen