Passing labels for tiny-yolo model using keras, expected activation_7 to have 4 dimensions, but got array...











up vote
0
down vote

favorite












I am trying to pass my own data from scratch through the tiny-YOLO architecture built using Keras.



In my understanding,
the labels for each image should be of the form:
[p_c, b_x, b_y, b_h, b_w, c_1, c_2] or variants for other cases.



In this case, there are 7 elements in each label for an image.



Final layer is a convolutional layer with output (3, 3, 7), with each channel representing the label.



However, during training and at the final layer, the linear activation of the convolutional layer expects 4 dimensions whilst the labels I've provided is of the form (m, 7) as explained above. (note: m = number of training data).



What should I do to fix this? Any help will be appreciated!



Below is a model summary and the error at the bottom.



   Layer (type)                 Output Shape              Param #
=================================================================
conv2d_1 (Conv2D) (None, 100, 100, 16) 448
_________________________________________________________________
activation_1 (Activation) (None, 100, 100, 16) 0
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 50, 50, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 50, 50, 32) 4640
_________________________________________________________________
leaky_re_lu_1 (LeakyReLU) (None, 50, 50, 32) 0
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 25, 25, 32) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 25, 25, 64) 18496
_________________________________________________________________
activation_2 (Activation) (None, 25, 25, 64) 0
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 12, 12, 64) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 12, 12, 128) 73856
_________________________________________________________________
activation_3 (Activation) (None, 12, 12, 128) 0
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 6, 6, 128) 0
_________________________________________________________________
conv2d_5 (Conv2D) (None, 6, 6, 512) 590336
_________________________________________________________________
activation_4 (Activation) (None, 6, 6, 512) 0
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 3, 3, 512) 0
_________________________________________________________________
conv2d_6 (Conv2D) (None, 3, 3, 1024) 4719616
_________________________________________________________________
activation_5 (Activation) (None, 3, 3, 1024) 0
_________________________________________________________________
conv2d_7 (Conv2D) (None, 3, 3, 1024) 9438208
_________________________________________________________________
activation_6 (Activation) (None, 3, 3, 1024) 0
_________________________________________________________________
conv2d_8 (Conv2D) (None, 3, 3, 7) 7175
_________________________________________________________________
activation_7 (Activation) (None, 3, 3, 7) 0
=================================================================
Total params: 14,852,775
Trainable params: 14,852,775
Non-trainable params: 0
_________________________________________________________________


Error:



    ValueError: Error when checking target: expected activation_7 to have 4 dimensions, but got array with shape (246, 7)


Model Code:



def build_model(img_rows, img_cols, num_channels):
model = Sequential()

input_shape = (img_rows, img_cols, num_channels)

if K.image_data_format() == "channels_first":
input_shape = (num_channels, img_rows, img_cols)

model.add(Conv2D(filters=16, kernel_size=3, padding="same", input_shape=input_shape))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=32, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=64, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=128, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=512, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=1024, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(Conv2D(filters=1024, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
#Softmax layer (filters: p_c, b_x, b_y, b_w, b_h, 2 classes)
model.add(Conv2D(filters=7, kernel_size=1, padding="same"))
model.add(Activation("linear"))

return model


Training Code:



def main():    
# Put training data and labels into variables.
(train_images, train_labels), (test_images, test_labels) = get_data()

# Normalize training data variables.
train_images = train_images.astype("float32")/225.0
test_images = test_images.astype("float32")/225.0



# Create tiny-Yolo model
model = TinyYolo.build_model(100, 100, 3)
model.summary()
optimizer = SGD(lr = 0.01)

model.compile(loss = "categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
model.fit(train_images, train_labels, batch_size=12, epochs=20, verbose=1)
(loss, accuracy) = model.evaluate(test_images, test_labels, batch_size=12,verbose=1)









share|improve this question




















  • 1




    Add the code for creating the model. and training.
    – Or Dinari
    2 days ago















up vote
0
down vote

favorite












I am trying to pass my own data from scratch through the tiny-YOLO architecture built using Keras.



In my understanding,
the labels for each image should be of the form:
[p_c, b_x, b_y, b_h, b_w, c_1, c_2] or variants for other cases.



In this case, there are 7 elements in each label for an image.



Final layer is a convolutional layer with output (3, 3, 7), with each channel representing the label.



However, during training and at the final layer, the linear activation of the convolutional layer expects 4 dimensions whilst the labels I've provided is of the form (m, 7) as explained above. (note: m = number of training data).



What should I do to fix this? Any help will be appreciated!



Below is a model summary and the error at the bottom.



   Layer (type)                 Output Shape              Param #
=================================================================
conv2d_1 (Conv2D) (None, 100, 100, 16) 448
_________________________________________________________________
activation_1 (Activation) (None, 100, 100, 16) 0
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 50, 50, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 50, 50, 32) 4640
_________________________________________________________________
leaky_re_lu_1 (LeakyReLU) (None, 50, 50, 32) 0
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 25, 25, 32) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 25, 25, 64) 18496
_________________________________________________________________
activation_2 (Activation) (None, 25, 25, 64) 0
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 12, 12, 64) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 12, 12, 128) 73856
_________________________________________________________________
activation_3 (Activation) (None, 12, 12, 128) 0
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 6, 6, 128) 0
_________________________________________________________________
conv2d_5 (Conv2D) (None, 6, 6, 512) 590336
_________________________________________________________________
activation_4 (Activation) (None, 6, 6, 512) 0
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 3, 3, 512) 0
_________________________________________________________________
conv2d_6 (Conv2D) (None, 3, 3, 1024) 4719616
_________________________________________________________________
activation_5 (Activation) (None, 3, 3, 1024) 0
_________________________________________________________________
conv2d_7 (Conv2D) (None, 3, 3, 1024) 9438208
_________________________________________________________________
activation_6 (Activation) (None, 3, 3, 1024) 0
_________________________________________________________________
conv2d_8 (Conv2D) (None, 3, 3, 7) 7175
_________________________________________________________________
activation_7 (Activation) (None, 3, 3, 7) 0
=================================================================
Total params: 14,852,775
Trainable params: 14,852,775
Non-trainable params: 0
_________________________________________________________________


Error:



    ValueError: Error when checking target: expected activation_7 to have 4 dimensions, but got array with shape (246, 7)


Model Code:



def build_model(img_rows, img_cols, num_channels):
model = Sequential()

input_shape = (img_rows, img_cols, num_channels)

if K.image_data_format() == "channels_first":
input_shape = (num_channels, img_rows, img_cols)

model.add(Conv2D(filters=16, kernel_size=3, padding="same", input_shape=input_shape))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=32, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=64, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=128, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=512, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=1024, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(Conv2D(filters=1024, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
#Softmax layer (filters: p_c, b_x, b_y, b_w, b_h, 2 classes)
model.add(Conv2D(filters=7, kernel_size=1, padding="same"))
model.add(Activation("linear"))

return model


Training Code:



def main():    
# Put training data and labels into variables.
(train_images, train_labels), (test_images, test_labels) = get_data()

# Normalize training data variables.
train_images = train_images.astype("float32")/225.0
test_images = test_images.astype("float32")/225.0



# Create tiny-Yolo model
model = TinyYolo.build_model(100, 100, 3)
model.summary()
optimizer = SGD(lr = 0.01)

model.compile(loss = "categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
model.fit(train_images, train_labels, batch_size=12, epochs=20, verbose=1)
(loss, accuracy) = model.evaluate(test_images, test_labels, batch_size=12,verbose=1)









share|improve this question




















  • 1




    Add the code for creating the model. and training.
    – Or Dinari
    2 days ago













up vote
0
down vote

favorite









up vote
0
down vote

favorite











I am trying to pass my own data from scratch through the tiny-YOLO architecture built using Keras.



In my understanding,
the labels for each image should be of the form:
[p_c, b_x, b_y, b_h, b_w, c_1, c_2] or variants for other cases.



In this case, there are 7 elements in each label for an image.



Final layer is a convolutional layer with output (3, 3, 7), with each channel representing the label.



However, during training and at the final layer, the linear activation of the convolutional layer expects 4 dimensions whilst the labels I've provided is of the form (m, 7) as explained above. (note: m = number of training data).



What should I do to fix this? Any help will be appreciated!



Below is a model summary and the error at the bottom.



   Layer (type)                 Output Shape              Param #
=================================================================
conv2d_1 (Conv2D) (None, 100, 100, 16) 448
_________________________________________________________________
activation_1 (Activation) (None, 100, 100, 16) 0
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 50, 50, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 50, 50, 32) 4640
_________________________________________________________________
leaky_re_lu_1 (LeakyReLU) (None, 50, 50, 32) 0
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 25, 25, 32) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 25, 25, 64) 18496
_________________________________________________________________
activation_2 (Activation) (None, 25, 25, 64) 0
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 12, 12, 64) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 12, 12, 128) 73856
_________________________________________________________________
activation_3 (Activation) (None, 12, 12, 128) 0
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 6, 6, 128) 0
_________________________________________________________________
conv2d_5 (Conv2D) (None, 6, 6, 512) 590336
_________________________________________________________________
activation_4 (Activation) (None, 6, 6, 512) 0
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 3, 3, 512) 0
_________________________________________________________________
conv2d_6 (Conv2D) (None, 3, 3, 1024) 4719616
_________________________________________________________________
activation_5 (Activation) (None, 3, 3, 1024) 0
_________________________________________________________________
conv2d_7 (Conv2D) (None, 3, 3, 1024) 9438208
_________________________________________________________________
activation_6 (Activation) (None, 3, 3, 1024) 0
_________________________________________________________________
conv2d_8 (Conv2D) (None, 3, 3, 7) 7175
_________________________________________________________________
activation_7 (Activation) (None, 3, 3, 7) 0
=================================================================
Total params: 14,852,775
Trainable params: 14,852,775
Non-trainable params: 0
_________________________________________________________________


Error:



    ValueError: Error when checking target: expected activation_7 to have 4 dimensions, but got array with shape (246, 7)


Model Code:



def build_model(img_rows, img_cols, num_channels):
model = Sequential()

input_shape = (img_rows, img_cols, num_channels)

if K.image_data_format() == "channels_first":
input_shape = (num_channels, img_rows, img_cols)

model.add(Conv2D(filters=16, kernel_size=3, padding="same", input_shape=input_shape))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=32, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=64, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=128, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=512, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=1024, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(Conv2D(filters=1024, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
#Softmax layer (filters: p_c, b_x, b_y, b_w, b_h, 2 classes)
model.add(Conv2D(filters=7, kernel_size=1, padding="same"))
model.add(Activation("linear"))

return model


Training Code:



def main():    
# Put training data and labels into variables.
(train_images, train_labels), (test_images, test_labels) = get_data()

# Normalize training data variables.
train_images = train_images.astype("float32")/225.0
test_images = test_images.astype("float32")/225.0



# Create tiny-Yolo model
model = TinyYolo.build_model(100, 100, 3)
model.summary()
optimizer = SGD(lr = 0.01)

model.compile(loss = "categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
model.fit(train_images, train_labels, batch_size=12, epochs=20, verbose=1)
(loss, accuracy) = model.evaluate(test_images, test_labels, batch_size=12,verbose=1)









share|improve this question















I am trying to pass my own data from scratch through the tiny-YOLO architecture built using Keras.



In my understanding,
the labels for each image should be of the form:
[p_c, b_x, b_y, b_h, b_w, c_1, c_2] or variants for other cases.



In this case, there are 7 elements in each label for an image.



Final layer is a convolutional layer with output (3, 3, 7), with each channel representing the label.



However, during training and at the final layer, the linear activation of the convolutional layer expects 4 dimensions whilst the labels I've provided is of the form (m, 7) as explained above. (note: m = number of training data).



What should I do to fix this? Any help will be appreciated!



Below is a model summary and the error at the bottom.



   Layer (type)                 Output Shape              Param #
=================================================================
conv2d_1 (Conv2D) (None, 100, 100, 16) 448
_________________________________________________________________
activation_1 (Activation) (None, 100, 100, 16) 0
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 50, 50, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 50, 50, 32) 4640
_________________________________________________________________
leaky_re_lu_1 (LeakyReLU) (None, 50, 50, 32) 0
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 25, 25, 32) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 25, 25, 64) 18496
_________________________________________________________________
activation_2 (Activation) (None, 25, 25, 64) 0
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 12, 12, 64) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 12, 12, 128) 73856
_________________________________________________________________
activation_3 (Activation) (None, 12, 12, 128) 0
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 6, 6, 128) 0
_________________________________________________________________
conv2d_5 (Conv2D) (None, 6, 6, 512) 590336
_________________________________________________________________
activation_4 (Activation) (None, 6, 6, 512) 0
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 3, 3, 512) 0
_________________________________________________________________
conv2d_6 (Conv2D) (None, 3, 3, 1024) 4719616
_________________________________________________________________
activation_5 (Activation) (None, 3, 3, 1024) 0
_________________________________________________________________
conv2d_7 (Conv2D) (None, 3, 3, 1024) 9438208
_________________________________________________________________
activation_6 (Activation) (None, 3, 3, 1024) 0
_________________________________________________________________
conv2d_8 (Conv2D) (None, 3, 3, 7) 7175
_________________________________________________________________
activation_7 (Activation) (None, 3, 3, 7) 0
=================================================================
Total params: 14,852,775
Trainable params: 14,852,775
Non-trainable params: 0
_________________________________________________________________


Error:



    ValueError: Error when checking target: expected activation_7 to have 4 dimensions, but got array with shape (246, 7)


Model Code:



def build_model(img_rows, img_cols, num_channels):
model = Sequential()

input_shape = (img_rows, img_cols, num_channels)

if K.image_data_format() == "channels_first":
input_shape = (num_channels, img_rows, img_cols)

model.add(Conv2D(filters=16, kernel_size=3, padding="same", input_shape=input_shape))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=32, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=64, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=128, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=512, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2), strides=2))

model.add(Conv2D(filters=1024, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
model.add(Conv2D(filters=1024, kernel_size=3, padding="same"))
# model.add(LeakyReLU())
model.add(Activation("relu"))
#Softmax layer (filters: p_c, b_x, b_y, b_w, b_h, 2 classes)
model.add(Conv2D(filters=7, kernel_size=1, padding="same"))
model.add(Activation("linear"))

return model


Training Code:



def main():    
# Put training data and labels into variables.
(train_images, train_labels), (test_images, test_labels) = get_data()

# Normalize training data variables.
train_images = train_images.astype("float32")/225.0
test_images = test_images.astype("float32")/225.0



# Create tiny-Yolo model
model = TinyYolo.build_model(100, 100, 3)
model.summary()
optimizer = SGD(lr = 0.01)

model.compile(loss = "categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
model.fit(train_images, train_labels, batch_size=12, epochs=20, verbose=1)
(loss, accuracy) = model.evaluate(test_images, test_labels, batch_size=12,verbose=1)






python tensorflow keras yolo






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 2 days ago

























asked 2 days ago









Jack-P

42




42








  • 1




    Add the code for creating the model. and training.
    – Or Dinari
    2 days ago














  • 1




    Add the code for creating the model. and training.
    – Or Dinari
    2 days ago








1




1




Add the code for creating the model. and training.
– Or Dinari
2 days ago




Add the code for creating the model. and training.
– Or Dinari
2 days ago

















active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53372672%2fpassing-labels-for-tiny-yolo-model-using-keras-expected-activation-7-to-have-4%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53372672%2fpassing-labels-for-tiny-yolo-model-using-keras-expected-activation-7-to-have-4%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen