Which pyspark methods should I use for this table join?











up vote
-2
down vote

favorite












Article
|------|-----------|-------|
| ID | PARENT_ID | _data |
|------|-----------|-------|
| 12 | 34 | mom |
|------|-----------|-------|
| 5 | 34 | dad |
|------|-----------|-------|


Article_Meta
|-------|---------|------------|
| ID | USER_ID | COMMENT_ID |
|-------|---------|------------|
| 12 | [3] | [ 7, 8] |
|-------|---------|------------|
| 34 | [6] | [ 1, 2] |
|-------|---------|------------|

Result: Article + Article_Metadata
ID 12 has User ID 3 and 6 because
ID = Article_Meta#12 has User_ID 3 AND
ParentID = Article_Meta#34 has USER_ID 6

|------|-----------|-------|---------|------------|
| ID | PARENT_ID | _data | USER_ID | COMMENT_ID |
|------|-----------|-------|---------|------------|
| 12 | 34 | mom | [ 3, 6] |[7, 8, 1, 2]|
|------|-----------|-------|---------|------------|
| 5 | 34 | dad | [6] | [ 1, 2] |
|------|-----------|-------|---------|------------|


I have a table Article and I would like to join it with Article_Meta.



As you can see Article has an ID and a ParentID. Both this columns belong to the Article_Meta ID column.



How should I join Article with Article_Meta so that the USER_ID and COMMENT_ID are the combined result of the Article_PARENT_ID AND Article_ID in the MetaData Table? (Wich pyspark methods should I use?)



More Explanation:
In the Result Table Article #12 has USER_ID [3, 6] that's because Article #12 belongs to Article_Meta #12 and #34 (Parent ID)










share|improve this question


























    up vote
    -2
    down vote

    favorite












    Article
    |------|-----------|-------|
    | ID | PARENT_ID | _data |
    |------|-----------|-------|
    | 12 | 34 | mom |
    |------|-----------|-------|
    | 5 | 34 | dad |
    |------|-----------|-------|


    Article_Meta
    |-------|---------|------------|
    | ID | USER_ID | COMMENT_ID |
    |-------|---------|------------|
    | 12 | [3] | [ 7, 8] |
    |-------|---------|------------|
    | 34 | [6] | [ 1, 2] |
    |-------|---------|------------|

    Result: Article + Article_Metadata
    ID 12 has User ID 3 and 6 because
    ID = Article_Meta#12 has User_ID 3 AND
    ParentID = Article_Meta#34 has USER_ID 6

    |------|-----------|-------|---------|------------|
    | ID | PARENT_ID | _data | USER_ID | COMMENT_ID |
    |------|-----------|-------|---------|------------|
    | 12 | 34 | mom | [ 3, 6] |[7, 8, 1, 2]|
    |------|-----------|-------|---------|------------|
    | 5 | 34 | dad | [6] | [ 1, 2] |
    |------|-----------|-------|---------|------------|


    I have a table Article and I would like to join it with Article_Meta.



    As you can see Article has an ID and a ParentID. Both this columns belong to the Article_Meta ID column.



    How should I join Article with Article_Meta so that the USER_ID and COMMENT_ID are the combined result of the Article_PARENT_ID AND Article_ID in the MetaData Table? (Wich pyspark methods should I use?)



    More Explanation:
    In the Result Table Article #12 has USER_ID [3, 6] that's because Article #12 belongs to Article_Meta #12 and #34 (Parent ID)










    share|improve this question
























      up vote
      -2
      down vote

      favorite









      up vote
      -2
      down vote

      favorite











      Article
      |------|-----------|-------|
      | ID | PARENT_ID | _data |
      |------|-----------|-------|
      | 12 | 34 | mom |
      |------|-----------|-------|
      | 5 | 34 | dad |
      |------|-----------|-------|


      Article_Meta
      |-------|---------|------------|
      | ID | USER_ID | COMMENT_ID |
      |-------|---------|------------|
      | 12 | [3] | [ 7, 8] |
      |-------|---------|------------|
      | 34 | [6] | [ 1, 2] |
      |-------|---------|------------|

      Result: Article + Article_Metadata
      ID 12 has User ID 3 and 6 because
      ID = Article_Meta#12 has User_ID 3 AND
      ParentID = Article_Meta#34 has USER_ID 6

      |------|-----------|-------|---------|------------|
      | ID | PARENT_ID | _data | USER_ID | COMMENT_ID |
      |------|-----------|-------|---------|------------|
      | 12 | 34 | mom | [ 3, 6] |[7, 8, 1, 2]|
      |------|-----------|-------|---------|------------|
      | 5 | 34 | dad | [6] | [ 1, 2] |
      |------|-----------|-------|---------|------------|


      I have a table Article and I would like to join it with Article_Meta.



      As you can see Article has an ID and a ParentID. Both this columns belong to the Article_Meta ID column.



      How should I join Article with Article_Meta so that the USER_ID and COMMENT_ID are the combined result of the Article_PARENT_ID AND Article_ID in the MetaData Table? (Wich pyspark methods should I use?)



      More Explanation:
      In the Result Table Article #12 has USER_ID [3, 6] that's because Article #12 belongs to Article_Meta #12 and #34 (Parent ID)










      share|improve this question













      Article
      |------|-----------|-------|
      | ID | PARENT_ID | _data |
      |------|-----------|-------|
      | 12 | 34 | mom |
      |------|-----------|-------|
      | 5 | 34 | dad |
      |------|-----------|-------|


      Article_Meta
      |-------|---------|------------|
      | ID | USER_ID | COMMENT_ID |
      |-------|---------|------------|
      | 12 | [3] | [ 7, 8] |
      |-------|---------|------------|
      | 34 | [6] | [ 1, 2] |
      |-------|---------|------------|

      Result: Article + Article_Metadata
      ID 12 has User ID 3 and 6 because
      ID = Article_Meta#12 has User_ID 3 AND
      ParentID = Article_Meta#34 has USER_ID 6

      |------|-----------|-------|---------|------------|
      | ID | PARENT_ID | _data | USER_ID | COMMENT_ID |
      |------|-----------|-------|---------|------------|
      | 12 | 34 | mom | [ 3, 6] |[7, 8, 1, 2]|
      |------|-----------|-------|---------|------------|
      | 5 | 34 | dad | [6] | [ 1, 2] |
      |------|-----------|-------|---------|------------|


      I have a table Article and I would like to join it with Article_Meta.



      As you can see Article has an ID and a ParentID. Both this columns belong to the Article_Meta ID column.



      How should I join Article with Article_Meta so that the USER_ID and COMMENT_ID are the combined result of the Article_PARENT_ID AND Article_ID in the MetaData Table? (Wich pyspark methods should I use?)



      More Explanation:
      In the Result Table Article #12 has USER_ID [3, 6] that's because Article #12 belongs to Article_Meta #12 and #34 (Parent ID)







      apache-spark pyspark apache-spark-sql






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 2 days ago









      John Smith

      2,59173767




      2,59173767





























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53372706%2fwhich-pyspark-methods-should-i-use-for-this-table-join%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53372706%2fwhich-pyspark-methods-should-i-use-for-this-table-join%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen