Transform a non-linear differential equation into a linear equation











up vote
0
down vote

favorite












Following the work of Yaoji Lu - 1967 (here's a link to the full paper) I got stuck at the step when the author transform a non-linear differential equation into a linear equation (eq. 3.9 pag. 19).



More precisely he starts from this equation:



$$frac{dY}{dX}=frac{Y}{X}-alpha cdot X^{-frac{c}{b}-1}cdot Y^{frac{1}{b}}$$



Then define $Z=Y^{1-frac{1}{b}}$ and eventually get:



$$frac{dZ}{dX}+frac{1-b}{b}cdot frac{1}{X}cdot Z=alpha frac{1-b}{b}cdot X^{-frac{c}{b}-1}$$



Is there anyone who can help me with this?










share|cite|improve this question







New contributor




Alessandro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • It's Bernouilli 's equation
    – Isham
    2 days ago















up vote
0
down vote

favorite












Following the work of Yaoji Lu - 1967 (here's a link to the full paper) I got stuck at the step when the author transform a non-linear differential equation into a linear equation (eq. 3.9 pag. 19).



More precisely he starts from this equation:



$$frac{dY}{dX}=frac{Y}{X}-alpha cdot X^{-frac{c}{b}-1}cdot Y^{frac{1}{b}}$$



Then define $Z=Y^{1-frac{1}{b}}$ and eventually get:



$$frac{dZ}{dX}+frac{1-b}{b}cdot frac{1}{X}cdot Z=alpha frac{1-b}{b}cdot X^{-frac{c}{b}-1}$$



Is there anyone who can help me with this?










share|cite|improve this question







New contributor




Alessandro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • It's Bernouilli 's equation
    – Isham
    2 days ago













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Following the work of Yaoji Lu - 1967 (here's a link to the full paper) I got stuck at the step when the author transform a non-linear differential equation into a linear equation (eq. 3.9 pag. 19).



More precisely he starts from this equation:



$$frac{dY}{dX}=frac{Y}{X}-alpha cdot X^{-frac{c}{b}-1}cdot Y^{frac{1}{b}}$$



Then define $Z=Y^{1-frac{1}{b}}$ and eventually get:



$$frac{dZ}{dX}+frac{1-b}{b}cdot frac{1}{X}cdot Z=alpha frac{1-b}{b}cdot X^{-frac{c}{b}-1}$$



Is there anyone who can help me with this?










share|cite|improve this question







New contributor




Alessandro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











Following the work of Yaoji Lu - 1967 (here's a link to the full paper) I got stuck at the step when the author transform a non-linear differential equation into a linear equation (eq. 3.9 pag. 19).



More precisely he starts from this equation:



$$frac{dY}{dX}=frac{Y}{X}-alpha cdot X^{-frac{c}{b}-1}cdot Y^{frac{1}{b}}$$



Then define $Z=Y^{1-frac{1}{b}}$ and eventually get:



$$frac{dZ}{dX}+frac{1-b}{b}cdot frac{1}{X}cdot Z=alpha frac{1-b}{b}cdot X^{-frac{c}{b}-1}$$



Is there anyone who can help me with this?







linear-algebra differential-equations transformation economics nonlinear-analysis






share|cite|improve this question







New contributor




Alessandro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




Alessandro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




Alessandro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









Alessandro

11




11




New contributor




Alessandro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Alessandro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Alessandro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • It's Bernouilli 's equation
    – Isham
    2 days ago


















  • It's Bernouilli 's equation
    – Isham
    2 days ago
















It's Bernouilli 's equation
– Isham
2 days ago




It's Bernouilli 's equation
– Isham
2 days ago










1 Answer
1






active

oldest

votes

















up vote
0
down vote













It's Bernouilli's equation
$$frac{dY}{dX}=frac{Y}{X}-alpha cdot X^{-frac{c}{b}-1}cdot Y^{frac{1}{b}}$$
Divide by $y^{1/b}$
$$Y^{-frac{1}{b}}Y'=frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} $$
$$(1-frac 1b )Y^{-frac{1}{b}}Y'=(1-frac 1b)(frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} )$$
$$(Y^{1-frac{1}{b}})'=(1-frac 1b)(frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} )$$
Substitute $Z=Y^{1-frac 1b}$
$$Z'=(1-frac 1b)(frac Z{X}-alpha cdot X^{-frac{c}{b}-1} )$$






share|cite|improve this answer





















  • Thank you so much! ;)
    – Alessandro
    yesterday










  • toy're welcome @Alessandro
    – Isham
    yesterday











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






Alessandro is a new contributor. Be nice, and check out our Code of Conduct.










 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005366%2ftransform-a-non-linear-differential-equation-into-a-linear-equation%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
0
down vote













It's Bernouilli's equation
$$frac{dY}{dX}=frac{Y}{X}-alpha cdot X^{-frac{c}{b}-1}cdot Y^{frac{1}{b}}$$
Divide by $y^{1/b}$
$$Y^{-frac{1}{b}}Y'=frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} $$
$$(1-frac 1b )Y^{-frac{1}{b}}Y'=(1-frac 1b)(frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} )$$
$$(Y^{1-frac{1}{b}})'=(1-frac 1b)(frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} )$$
Substitute $Z=Y^{1-frac 1b}$
$$Z'=(1-frac 1b)(frac Z{X}-alpha cdot X^{-frac{c}{b}-1} )$$






share|cite|improve this answer





















  • Thank you so much! ;)
    – Alessandro
    yesterday










  • toy're welcome @Alessandro
    – Isham
    yesterday















up vote
0
down vote













It's Bernouilli's equation
$$frac{dY}{dX}=frac{Y}{X}-alpha cdot X^{-frac{c}{b}-1}cdot Y^{frac{1}{b}}$$
Divide by $y^{1/b}$
$$Y^{-frac{1}{b}}Y'=frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} $$
$$(1-frac 1b )Y^{-frac{1}{b}}Y'=(1-frac 1b)(frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} )$$
$$(Y^{1-frac{1}{b}})'=(1-frac 1b)(frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} )$$
Substitute $Z=Y^{1-frac 1b}$
$$Z'=(1-frac 1b)(frac Z{X}-alpha cdot X^{-frac{c}{b}-1} )$$






share|cite|improve this answer





















  • Thank you so much! ;)
    – Alessandro
    yesterday










  • toy're welcome @Alessandro
    – Isham
    yesterday













up vote
0
down vote










up vote
0
down vote









It's Bernouilli's equation
$$frac{dY}{dX}=frac{Y}{X}-alpha cdot X^{-frac{c}{b}-1}cdot Y^{frac{1}{b}}$$
Divide by $y^{1/b}$
$$Y^{-frac{1}{b}}Y'=frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} $$
$$(1-frac 1b )Y^{-frac{1}{b}}Y'=(1-frac 1b)(frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} )$$
$$(Y^{1-frac{1}{b}})'=(1-frac 1b)(frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} )$$
Substitute $Z=Y^{1-frac 1b}$
$$Z'=(1-frac 1b)(frac Z{X}-alpha cdot X^{-frac{c}{b}-1} )$$






share|cite|improve this answer












It's Bernouilli's equation
$$frac{dY}{dX}=frac{Y}{X}-alpha cdot X^{-frac{c}{b}-1}cdot Y^{frac{1}{b}}$$
Divide by $y^{1/b}$
$$Y^{-frac{1}{b}}Y'=frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} $$
$$(1-frac 1b )Y^{-frac{1}{b}}Y'=(1-frac 1b)(frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} )$$
$$(Y^{1-frac{1}{b}})'=(1-frac 1b)(frac{Y^{1-frac 1b}}{X}-alpha cdot X^{-frac{c}{b}-1} )$$
Substitute $Z=Y^{1-frac 1b}$
$$Z'=(1-frac 1b)(frac Z{X}-alpha cdot X^{-frac{c}{b}-1} )$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 2 days ago









Isham

12.7k3929




12.7k3929












  • Thank you so much! ;)
    – Alessandro
    yesterday










  • toy're welcome @Alessandro
    – Isham
    yesterday


















  • Thank you so much! ;)
    – Alessandro
    yesterday










  • toy're welcome @Alessandro
    – Isham
    yesterday
















Thank you so much! ;)
– Alessandro
yesterday




Thank you so much! ;)
– Alessandro
yesterday












toy're welcome @Alessandro
– Isham
yesterday




toy're welcome @Alessandro
– Isham
yesterday










Alessandro is a new contributor. Be nice, and check out our Code of Conduct.










 

draft saved


draft discarded


















Alessandro is a new contributor. Be nice, and check out our Code of Conduct.













Alessandro is a new contributor. Be nice, and check out our Code of Conduct.












Alessandro is a new contributor. Be nice, and check out our Code of Conduct.















 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005366%2ftransform-a-non-linear-differential-equation-into-a-linear-equation%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen