The operator norm of the composition of linear bounded operators between Banach spaces.











up vote
1
down vote

favorite












The set $B(X, Y )$ is a normed linear space with the operator norm.



If $T ∈ B(X, Y)$ and $S ∈ B(Y, Z)$ for $X, Y , Z$ normed linear spaces, then the composition
$ST ∈ B(X, Z)$ and $|ST| ≤ |S| |T|.$



I don't know how to prove this.



Here is my trial.



Since the composition if exist of 2 linear operators is a linear operator then $ST$ is a linear operator. To prove it is bounded we prove that $|ST x| < infty$.



if $|T| = sup_{|x|=1}|Tx| < infty$.



and $|S| = sup_{|y|=1}|Sy| < infty$.



I don't know how to continue.










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    The set $B(X, Y )$ is a normed linear space with the operator norm.



    If $T ∈ B(X, Y)$ and $S ∈ B(Y, Z)$ for $X, Y , Z$ normed linear spaces, then the composition
    $ST ∈ B(X, Z)$ and $|ST| ≤ |S| |T|.$



    I don't know how to prove this.



    Here is my trial.



    Since the composition if exist of 2 linear operators is a linear operator then $ST$ is a linear operator. To prove it is bounded we prove that $|ST x| < infty$.



    if $|T| = sup_{|x|=1}|Tx| < infty$.



    and $|S| = sup_{|y|=1}|Sy| < infty$.



    I don't know how to continue.










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      The set $B(X, Y )$ is a normed linear space with the operator norm.



      If $T ∈ B(X, Y)$ and $S ∈ B(Y, Z)$ for $X, Y , Z$ normed linear spaces, then the composition
      $ST ∈ B(X, Z)$ and $|ST| ≤ |S| |T|.$



      I don't know how to prove this.



      Here is my trial.



      Since the composition if exist of 2 linear operators is a linear operator then $ST$ is a linear operator. To prove it is bounded we prove that $|ST x| < infty$.



      if $|T| = sup_{|x|=1}|Tx| < infty$.



      and $|S| = sup_{|y|=1}|Sy| < infty$.



      I don't know how to continue.










      share|cite|improve this question















      The set $B(X, Y )$ is a normed linear space with the operator norm.



      If $T ∈ B(X, Y)$ and $S ∈ B(Y, Z)$ for $X, Y , Z$ normed linear spaces, then the composition
      $ST ∈ B(X, Z)$ and $|ST| ≤ |S| |T|.$



      I don't know how to prove this.



      Here is my trial.



      Since the composition if exist of 2 linear operators is a linear operator then $ST$ is a linear operator. To prove it is bounded we prove that $|ST x| < infty$.



      if $|T| = sup_{|x|=1}|Tx| < infty$.



      and $|S| = sup_{|y|=1}|Sy| < infty$.



      I don't know how to continue.







      functional-analysis proof-verification operator-theory linear-transformations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago









      Yaddle

      2,954827




      2,954827










      asked 2 days ago









      HybridAlien

      2008




      2008






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote













          Let $0 neq x in X$. Then you have that $Vert frac{x}{Vert x Vert} Vert = 1$. Thus we obtain
          $$frac{1}{Vert x Vert} Vert Tx Vert = Vert Tfrac{x}{Vert x Vert} Vert leq Vert T Vert.$$
          This implies shows that $Vert Tx Vert leq Vert T Vert Vert x Vert$ for all $x in X$. (Note: For $x = 0$ this is trivial.) Now from this it follows that
          $$ Vert STx Vert leq Vert S Vert Vert T x Vert leq Vert S Vert Vert T Vert Vert x Vert qquad text{for all } x in X.$$
          Finally, this implies
          $$ Vert ST Vert = sup_{Vert x Vert = 1} Vert STx Vert leq sup_{Vert x Vert = 1} Vert S Vert Vert T Vert Vert x Vert = Vert S Vert Vert T Vert$$
          and you are since the equality above implies $Vert ST Vert leq Vert S Vert Vert T Vert < infty$.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005389%2fthe-operator-norm-of-the-composition-of-linear-bounded-operators-between-banach%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote













            Let $0 neq x in X$. Then you have that $Vert frac{x}{Vert x Vert} Vert = 1$. Thus we obtain
            $$frac{1}{Vert x Vert} Vert Tx Vert = Vert Tfrac{x}{Vert x Vert} Vert leq Vert T Vert.$$
            This implies shows that $Vert Tx Vert leq Vert T Vert Vert x Vert$ for all $x in X$. (Note: For $x = 0$ this is trivial.) Now from this it follows that
            $$ Vert STx Vert leq Vert S Vert Vert T x Vert leq Vert S Vert Vert T Vert Vert x Vert qquad text{for all } x in X.$$
            Finally, this implies
            $$ Vert ST Vert = sup_{Vert x Vert = 1} Vert STx Vert leq sup_{Vert x Vert = 1} Vert S Vert Vert T Vert Vert x Vert = Vert S Vert Vert T Vert$$
            and you are since the equality above implies $Vert ST Vert leq Vert S Vert Vert T Vert < infty$.






            share|cite|improve this answer

























              up vote
              1
              down vote













              Let $0 neq x in X$. Then you have that $Vert frac{x}{Vert x Vert} Vert = 1$. Thus we obtain
              $$frac{1}{Vert x Vert} Vert Tx Vert = Vert Tfrac{x}{Vert x Vert} Vert leq Vert T Vert.$$
              This implies shows that $Vert Tx Vert leq Vert T Vert Vert x Vert$ for all $x in X$. (Note: For $x = 0$ this is trivial.) Now from this it follows that
              $$ Vert STx Vert leq Vert S Vert Vert T x Vert leq Vert S Vert Vert T Vert Vert x Vert qquad text{for all } x in X.$$
              Finally, this implies
              $$ Vert ST Vert = sup_{Vert x Vert = 1} Vert STx Vert leq sup_{Vert x Vert = 1} Vert S Vert Vert T Vert Vert x Vert = Vert S Vert Vert T Vert$$
              and you are since the equality above implies $Vert ST Vert leq Vert S Vert Vert T Vert < infty$.






              share|cite|improve this answer























                up vote
                1
                down vote










                up vote
                1
                down vote









                Let $0 neq x in X$. Then you have that $Vert frac{x}{Vert x Vert} Vert = 1$. Thus we obtain
                $$frac{1}{Vert x Vert} Vert Tx Vert = Vert Tfrac{x}{Vert x Vert} Vert leq Vert T Vert.$$
                This implies shows that $Vert Tx Vert leq Vert T Vert Vert x Vert$ for all $x in X$. (Note: For $x = 0$ this is trivial.) Now from this it follows that
                $$ Vert STx Vert leq Vert S Vert Vert T x Vert leq Vert S Vert Vert T Vert Vert x Vert qquad text{for all } x in X.$$
                Finally, this implies
                $$ Vert ST Vert = sup_{Vert x Vert = 1} Vert STx Vert leq sup_{Vert x Vert = 1} Vert S Vert Vert T Vert Vert x Vert = Vert S Vert Vert T Vert$$
                and you are since the equality above implies $Vert ST Vert leq Vert S Vert Vert T Vert < infty$.






                share|cite|improve this answer












                Let $0 neq x in X$. Then you have that $Vert frac{x}{Vert x Vert} Vert = 1$. Thus we obtain
                $$frac{1}{Vert x Vert} Vert Tx Vert = Vert Tfrac{x}{Vert x Vert} Vert leq Vert T Vert.$$
                This implies shows that $Vert Tx Vert leq Vert T Vert Vert x Vert$ for all $x in X$. (Note: For $x = 0$ this is trivial.) Now from this it follows that
                $$ Vert STx Vert leq Vert S Vert Vert T x Vert leq Vert S Vert Vert T Vert Vert x Vert qquad text{for all } x in X.$$
                Finally, this implies
                $$ Vert ST Vert = sup_{Vert x Vert = 1} Vert STx Vert leq sup_{Vert x Vert = 1} Vert S Vert Vert T Vert Vert x Vert = Vert S Vert Vert T Vert$$
                and you are since the equality above implies $Vert ST Vert leq Vert S Vert Vert T Vert < infty$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 days ago









                Yaddle

                2,954827




                2,954827






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005389%2fthe-operator-norm-of-the-composition-of-linear-bounded-operators-between-banach%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen