Find the $frac{d}{dx}$ of $g(x)=int_{2x}^{3x} frac{u^2-1}{u^2+1}du$
$begingroup$
First I split the integral
$$int_{2x}^{0} f(u)du+int_{0}^{3x}f(u)du$$
Then differentiate with respect to x
$$frac{d}{du}left[int_{2x}^{0}f(u)du+ int_{0}^{3x}f(u)duright]frac{dx}{du}$$
In my notes after diff. with respect to x I have
$$f'(x)=frac{4x}{(x^2+1)^2}$$
$$f'(2x)=frac{8x}{(2x^2+1)^2}$$
$$f'(3x)=frac{12x}{(3x^2+1)^2}$$
Then for an answer I get
$$g'(x)=frac{-2(4x^2-1)}{4x^2+1}+frac{3(9x^2-1}{9x^2+1}$$
And I can't understand how I arrived at that answer.
calculus
$endgroup$
add a comment |
$begingroup$
First I split the integral
$$int_{2x}^{0} f(u)du+int_{0}^{3x}f(u)du$$
Then differentiate with respect to x
$$frac{d}{du}left[int_{2x}^{0}f(u)du+ int_{0}^{3x}f(u)duright]frac{dx}{du}$$
In my notes after diff. with respect to x I have
$$f'(x)=frac{4x}{(x^2+1)^2}$$
$$f'(2x)=frac{8x}{(2x^2+1)^2}$$
$$f'(3x)=frac{12x}{(3x^2+1)^2}$$
Then for an answer I get
$$g'(x)=frac{-2(4x^2-1)}{4x^2+1}+frac{3(9x^2-1}{9x^2+1}$$
And I can't understand how I arrived at that answer.
calculus
$endgroup$
$begingroup$
The fourth line does not make sense: $u$ is nothing but a dummy variable.
$endgroup$
– user587192
Dec 10 '18 at 4:52
add a comment |
$begingroup$
First I split the integral
$$int_{2x}^{0} f(u)du+int_{0}^{3x}f(u)du$$
Then differentiate with respect to x
$$frac{d}{du}left[int_{2x}^{0}f(u)du+ int_{0}^{3x}f(u)duright]frac{dx}{du}$$
In my notes after diff. with respect to x I have
$$f'(x)=frac{4x}{(x^2+1)^2}$$
$$f'(2x)=frac{8x}{(2x^2+1)^2}$$
$$f'(3x)=frac{12x}{(3x^2+1)^2}$$
Then for an answer I get
$$g'(x)=frac{-2(4x^2-1)}{4x^2+1}+frac{3(9x^2-1}{9x^2+1}$$
And I can't understand how I arrived at that answer.
calculus
$endgroup$
First I split the integral
$$int_{2x}^{0} f(u)du+int_{0}^{3x}f(u)du$$
Then differentiate with respect to x
$$frac{d}{du}left[int_{2x}^{0}f(u)du+ int_{0}^{3x}f(u)duright]frac{dx}{du}$$
In my notes after diff. with respect to x I have
$$f'(x)=frac{4x}{(x^2+1)^2}$$
$$f'(2x)=frac{8x}{(2x^2+1)^2}$$
$$f'(3x)=frac{12x}{(3x^2+1)^2}$$
Then for an answer I get
$$g'(x)=frac{-2(4x^2-1)}{4x^2+1}+frac{3(9x^2-1}{9x^2+1}$$
And I can't understand how I arrived at that answer.
calculus
calculus
asked Dec 10 '18 at 3:08
Eric BrownEric Brown
737
737
$begingroup$
The fourth line does not make sense: $u$ is nothing but a dummy variable.
$endgroup$
– user587192
Dec 10 '18 at 4:52
add a comment |
$begingroup$
The fourth line does not make sense: $u$ is nothing but a dummy variable.
$endgroup$
– user587192
Dec 10 '18 at 4:52
$begingroup$
The fourth line does not make sense: $u$ is nothing but a dummy variable.
$endgroup$
– user587192
Dec 10 '18 at 4:52
$begingroup$
The fourth line does not make sense: $u$ is nothing but a dummy variable.
$endgroup$
– user587192
Dec 10 '18 at 4:52
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Let $F(u)$ be a function such that $F'(u)=f(u)$ with
$$
f(u)=frac{u^2-1}{u^2+1}.
$$
The fundamental theorem of calculus tells you that
$$
g(x)=F(3x)-F(2x).
$$
Now by the chain rule you get
$$
g'(x)=3cdot F'(3x)-2F'(2x)=3f(3x)-2f(2x)=frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}.
$$
Alternatively, you could apply directly the Leibniz integral rule.
$endgroup$
$begingroup$
So after plugging in I get $frac{27x^2-3}{27x^2+3}-frac{8x^2-2}{8x^2+2}$ Then how do i arrive at the answer?
$endgroup$
– Eric Brown
Dec 10 '18 at 4:53
$begingroup$
You did the wrong "plugging in". $3f(3x)-2f(2x)=3cdotfrac{(3x)^2-1}{(3x^2)^2+1}-2cdotfrac{(2x)^2-1}{(2x^2)^2+1}={color{red}{frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}}}$ is your answer.
$endgroup$
– user587192
Dec 10 '18 at 13:25
add a comment |
$begingroup$
Hint
$$frac{d}{dx}int_{a(x)}^{b(x)}f(u) , du=f(b(x)) frac{d}{dx}(b(x))-f(a(x)) frac{d}{dx}(a(x))$$
In your case $a(x)=2x, b(x)=3x$ and $f(u)=frac{u^2-1}{u^2+1}$. You don't need the derivatives of $f$ that you have computed.
$endgroup$
$begingroup$
so I sub in 3x for u to get $3x^2$?
$endgroup$
– Eric Brown
Dec 10 '18 at 3:44
$begingroup$
@EricBrown Actually $f(3x)=frac{(3x)^2-1}{(3x)^2+1}$.
$endgroup$
– Anurag A
Dec 10 '18 at 3:48
$begingroup$
so after plugging in I get $frac{9x^2-1}{9x^2+1}(3)-frac{4x^2-1}{4x^2+1}(2)$. Then I multiply the two fractions to get $$frac{27x^2-3}{27x^3+3}-frac{8x^2-2}{8x^2+2}$$
$endgroup$
– Eric Brown
Dec 10 '18 at 4:00
$begingroup$
@EricBrown Yes that's correct.
$endgroup$
– Anurag A
Dec 10 '18 at 4:02
$begingroup$
Do I still need to integrate the two fractions?
$endgroup$
– Eric Brown
Dec 10 '18 at 4:35
add a comment |
$begingroup$
$$I(u)=intfrac{u^2-1}{u^2+1}mathrm du$$
$$I(u)=intfrac{u^2+1}{u^2+1}mathrm du-2intfrac{mathrm du}{u^2+1}$$
$$I(u)=u-2intfrac{mathrm du}{u^2+1}$$
Using the substitution $tan t=u$, we arrive at
$$I(u)=u-2arctan u$$
And from $g(x)=I(3x)-I(2x)$,
$$g(x)=x+arctan2x-arctan3x$$
Hence
$$g'(x)=1+frac2{1+4x^2}-frac3{1+9x^2}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033384%2ffind-the-fracddx-of-gx-int-2x3x-fracu2-1u21du%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $F(u)$ be a function such that $F'(u)=f(u)$ with
$$
f(u)=frac{u^2-1}{u^2+1}.
$$
The fundamental theorem of calculus tells you that
$$
g(x)=F(3x)-F(2x).
$$
Now by the chain rule you get
$$
g'(x)=3cdot F'(3x)-2F'(2x)=3f(3x)-2f(2x)=frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}.
$$
Alternatively, you could apply directly the Leibniz integral rule.
$endgroup$
$begingroup$
So after plugging in I get $frac{27x^2-3}{27x^2+3}-frac{8x^2-2}{8x^2+2}$ Then how do i arrive at the answer?
$endgroup$
– Eric Brown
Dec 10 '18 at 4:53
$begingroup$
You did the wrong "plugging in". $3f(3x)-2f(2x)=3cdotfrac{(3x)^2-1}{(3x^2)^2+1}-2cdotfrac{(2x)^2-1}{(2x^2)^2+1}={color{red}{frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}}}$ is your answer.
$endgroup$
– user587192
Dec 10 '18 at 13:25
add a comment |
$begingroup$
Let $F(u)$ be a function such that $F'(u)=f(u)$ with
$$
f(u)=frac{u^2-1}{u^2+1}.
$$
The fundamental theorem of calculus tells you that
$$
g(x)=F(3x)-F(2x).
$$
Now by the chain rule you get
$$
g'(x)=3cdot F'(3x)-2F'(2x)=3f(3x)-2f(2x)=frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}.
$$
Alternatively, you could apply directly the Leibniz integral rule.
$endgroup$
$begingroup$
So after plugging in I get $frac{27x^2-3}{27x^2+3}-frac{8x^2-2}{8x^2+2}$ Then how do i arrive at the answer?
$endgroup$
– Eric Brown
Dec 10 '18 at 4:53
$begingroup$
You did the wrong "plugging in". $3f(3x)-2f(2x)=3cdotfrac{(3x)^2-1}{(3x^2)^2+1}-2cdotfrac{(2x)^2-1}{(2x^2)^2+1}={color{red}{frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}}}$ is your answer.
$endgroup$
– user587192
Dec 10 '18 at 13:25
add a comment |
$begingroup$
Let $F(u)$ be a function such that $F'(u)=f(u)$ with
$$
f(u)=frac{u^2-1}{u^2+1}.
$$
The fundamental theorem of calculus tells you that
$$
g(x)=F(3x)-F(2x).
$$
Now by the chain rule you get
$$
g'(x)=3cdot F'(3x)-2F'(2x)=3f(3x)-2f(2x)=frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}.
$$
Alternatively, you could apply directly the Leibniz integral rule.
$endgroup$
Let $F(u)$ be a function such that $F'(u)=f(u)$ with
$$
f(u)=frac{u^2-1}{u^2+1}.
$$
The fundamental theorem of calculus tells you that
$$
g(x)=F(3x)-F(2x).
$$
Now by the chain rule you get
$$
g'(x)=3cdot F'(3x)-2F'(2x)=3f(3x)-2f(2x)=frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}.
$$
Alternatively, you could apply directly the Leibniz integral rule.
answered Dec 10 '18 at 4:48
user587192user587192
1,868315
1,868315
$begingroup$
So after plugging in I get $frac{27x^2-3}{27x^2+3}-frac{8x^2-2}{8x^2+2}$ Then how do i arrive at the answer?
$endgroup$
– Eric Brown
Dec 10 '18 at 4:53
$begingroup$
You did the wrong "plugging in". $3f(3x)-2f(2x)=3cdotfrac{(3x)^2-1}{(3x^2)^2+1}-2cdotfrac{(2x)^2-1}{(2x^2)^2+1}={color{red}{frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}}}$ is your answer.
$endgroup$
– user587192
Dec 10 '18 at 13:25
add a comment |
$begingroup$
So after plugging in I get $frac{27x^2-3}{27x^2+3}-frac{8x^2-2}{8x^2+2}$ Then how do i arrive at the answer?
$endgroup$
– Eric Brown
Dec 10 '18 at 4:53
$begingroup$
You did the wrong "plugging in". $3f(3x)-2f(2x)=3cdotfrac{(3x)^2-1}{(3x^2)^2+1}-2cdotfrac{(2x)^2-1}{(2x^2)^2+1}={color{red}{frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}}}$ is your answer.
$endgroup$
– user587192
Dec 10 '18 at 13:25
$begingroup$
So after plugging in I get $frac{27x^2-3}{27x^2+3}-frac{8x^2-2}{8x^2+2}$ Then how do i arrive at the answer?
$endgroup$
– Eric Brown
Dec 10 '18 at 4:53
$begingroup$
So after plugging in I get $frac{27x^2-3}{27x^2+3}-frac{8x^2-2}{8x^2+2}$ Then how do i arrive at the answer?
$endgroup$
– Eric Brown
Dec 10 '18 at 4:53
$begingroup$
You did the wrong "plugging in". $3f(3x)-2f(2x)=3cdotfrac{(3x)^2-1}{(3x^2)^2+1}-2cdotfrac{(2x)^2-1}{(2x^2)^2+1}={color{red}{frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}}}$ is your answer.
$endgroup$
– user587192
Dec 10 '18 at 13:25
$begingroup$
You did the wrong "plugging in". $3f(3x)-2f(2x)=3cdotfrac{(3x)^2-1}{(3x^2)^2+1}-2cdotfrac{(2x)^2-1}{(2x^2)^2+1}={color{red}{frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}}}$ is your answer.
$endgroup$
– user587192
Dec 10 '18 at 13:25
add a comment |
$begingroup$
Hint
$$frac{d}{dx}int_{a(x)}^{b(x)}f(u) , du=f(b(x)) frac{d}{dx}(b(x))-f(a(x)) frac{d}{dx}(a(x))$$
In your case $a(x)=2x, b(x)=3x$ and $f(u)=frac{u^2-1}{u^2+1}$. You don't need the derivatives of $f$ that you have computed.
$endgroup$
$begingroup$
so I sub in 3x for u to get $3x^2$?
$endgroup$
– Eric Brown
Dec 10 '18 at 3:44
$begingroup$
@EricBrown Actually $f(3x)=frac{(3x)^2-1}{(3x)^2+1}$.
$endgroup$
– Anurag A
Dec 10 '18 at 3:48
$begingroup$
so after plugging in I get $frac{9x^2-1}{9x^2+1}(3)-frac{4x^2-1}{4x^2+1}(2)$. Then I multiply the two fractions to get $$frac{27x^2-3}{27x^3+3}-frac{8x^2-2}{8x^2+2}$$
$endgroup$
– Eric Brown
Dec 10 '18 at 4:00
$begingroup$
@EricBrown Yes that's correct.
$endgroup$
– Anurag A
Dec 10 '18 at 4:02
$begingroup$
Do I still need to integrate the two fractions?
$endgroup$
– Eric Brown
Dec 10 '18 at 4:35
add a comment |
$begingroup$
Hint
$$frac{d}{dx}int_{a(x)}^{b(x)}f(u) , du=f(b(x)) frac{d}{dx}(b(x))-f(a(x)) frac{d}{dx}(a(x))$$
In your case $a(x)=2x, b(x)=3x$ and $f(u)=frac{u^2-1}{u^2+1}$. You don't need the derivatives of $f$ that you have computed.
$endgroup$
$begingroup$
so I sub in 3x for u to get $3x^2$?
$endgroup$
– Eric Brown
Dec 10 '18 at 3:44
$begingroup$
@EricBrown Actually $f(3x)=frac{(3x)^2-1}{(3x)^2+1}$.
$endgroup$
– Anurag A
Dec 10 '18 at 3:48
$begingroup$
so after plugging in I get $frac{9x^2-1}{9x^2+1}(3)-frac{4x^2-1}{4x^2+1}(2)$. Then I multiply the two fractions to get $$frac{27x^2-3}{27x^3+3}-frac{8x^2-2}{8x^2+2}$$
$endgroup$
– Eric Brown
Dec 10 '18 at 4:00
$begingroup$
@EricBrown Yes that's correct.
$endgroup$
– Anurag A
Dec 10 '18 at 4:02
$begingroup$
Do I still need to integrate the two fractions?
$endgroup$
– Eric Brown
Dec 10 '18 at 4:35
add a comment |
$begingroup$
Hint
$$frac{d}{dx}int_{a(x)}^{b(x)}f(u) , du=f(b(x)) frac{d}{dx}(b(x))-f(a(x)) frac{d}{dx}(a(x))$$
In your case $a(x)=2x, b(x)=3x$ and $f(u)=frac{u^2-1}{u^2+1}$. You don't need the derivatives of $f$ that you have computed.
$endgroup$
Hint
$$frac{d}{dx}int_{a(x)}^{b(x)}f(u) , du=f(b(x)) frac{d}{dx}(b(x))-f(a(x)) frac{d}{dx}(a(x))$$
In your case $a(x)=2x, b(x)=3x$ and $f(u)=frac{u^2-1}{u^2+1}$. You don't need the derivatives of $f$ that you have computed.
answered Dec 10 '18 at 3:19
Anurag AAnurag A
26k12249
26k12249
$begingroup$
so I sub in 3x for u to get $3x^2$?
$endgroup$
– Eric Brown
Dec 10 '18 at 3:44
$begingroup$
@EricBrown Actually $f(3x)=frac{(3x)^2-1}{(3x)^2+1}$.
$endgroup$
– Anurag A
Dec 10 '18 at 3:48
$begingroup$
so after plugging in I get $frac{9x^2-1}{9x^2+1}(3)-frac{4x^2-1}{4x^2+1}(2)$. Then I multiply the two fractions to get $$frac{27x^2-3}{27x^3+3}-frac{8x^2-2}{8x^2+2}$$
$endgroup$
– Eric Brown
Dec 10 '18 at 4:00
$begingroup$
@EricBrown Yes that's correct.
$endgroup$
– Anurag A
Dec 10 '18 at 4:02
$begingroup$
Do I still need to integrate the two fractions?
$endgroup$
– Eric Brown
Dec 10 '18 at 4:35
add a comment |
$begingroup$
so I sub in 3x for u to get $3x^2$?
$endgroup$
– Eric Brown
Dec 10 '18 at 3:44
$begingroup$
@EricBrown Actually $f(3x)=frac{(3x)^2-1}{(3x)^2+1}$.
$endgroup$
– Anurag A
Dec 10 '18 at 3:48
$begingroup$
so after plugging in I get $frac{9x^2-1}{9x^2+1}(3)-frac{4x^2-1}{4x^2+1}(2)$. Then I multiply the two fractions to get $$frac{27x^2-3}{27x^3+3}-frac{8x^2-2}{8x^2+2}$$
$endgroup$
– Eric Brown
Dec 10 '18 at 4:00
$begingroup$
@EricBrown Yes that's correct.
$endgroup$
– Anurag A
Dec 10 '18 at 4:02
$begingroup$
Do I still need to integrate the two fractions?
$endgroup$
– Eric Brown
Dec 10 '18 at 4:35
$begingroup$
so I sub in 3x for u to get $3x^2$?
$endgroup$
– Eric Brown
Dec 10 '18 at 3:44
$begingroup$
so I sub in 3x for u to get $3x^2$?
$endgroup$
– Eric Brown
Dec 10 '18 at 3:44
$begingroup$
@EricBrown Actually $f(3x)=frac{(3x)^2-1}{(3x)^2+1}$.
$endgroup$
– Anurag A
Dec 10 '18 at 3:48
$begingroup$
@EricBrown Actually $f(3x)=frac{(3x)^2-1}{(3x)^2+1}$.
$endgroup$
– Anurag A
Dec 10 '18 at 3:48
$begingroup$
so after plugging in I get $frac{9x^2-1}{9x^2+1}(3)-frac{4x^2-1}{4x^2+1}(2)$. Then I multiply the two fractions to get $$frac{27x^2-3}{27x^3+3}-frac{8x^2-2}{8x^2+2}$$
$endgroup$
– Eric Brown
Dec 10 '18 at 4:00
$begingroup$
so after plugging in I get $frac{9x^2-1}{9x^2+1}(3)-frac{4x^2-1}{4x^2+1}(2)$. Then I multiply the two fractions to get $$frac{27x^2-3}{27x^3+3}-frac{8x^2-2}{8x^2+2}$$
$endgroup$
– Eric Brown
Dec 10 '18 at 4:00
$begingroup$
@EricBrown Yes that's correct.
$endgroup$
– Anurag A
Dec 10 '18 at 4:02
$begingroup$
@EricBrown Yes that's correct.
$endgroup$
– Anurag A
Dec 10 '18 at 4:02
$begingroup$
Do I still need to integrate the two fractions?
$endgroup$
– Eric Brown
Dec 10 '18 at 4:35
$begingroup$
Do I still need to integrate the two fractions?
$endgroup$
– Eric Brown
Dec 10 '18 at 4:35
add a comment |
$begingroup$
$$I(u)=intfrac{u^2-1}{u^2+1}mathrm du$$
$$I(u)=intfrac{u^2+1}{u^2+1}mathrm du-2intfrac{mathrm du}{u^2+1}$$
$$I(u)=u-2intfrac{mathrm du}{u^2+1}$$
Using the substitution $tan t=u$, we arrive at
$$I(u)=u-2arctan u$$
And from $g(x)=I(3x)-I(2x)$,
$$g(x)=x+arctan2x-arctan3x$$
Hence
$$g'(x)=1+frac2{1+4x^2}-frac3{1+9x^2}$$
$endgroup$
add a comment |
$begingroup$
$$I(u)=intfrac{u^2-1}{u^2+1}mathrm du$$
$$I(u)=intfrac{u^2+1}{u^2+1}mathrm du-2intfrac{mathrm du}{u^2+1}$$
$$I(u)=u-2intfrac{mathrm du}{u^2+1}$$
Using the substitution $tan t=u$, we arrive at
$$I(u)=u-2arctan u$$
And from $g(x)=I(3x)-I(2x)$,
$$g(x)=x+arctan2x-arctan3x$$
Hence
$$g'(x)=1+frac2{1+4x^2}-frac3{1+9x^2}$$
$endgroup$
add a comment |
$begingroup$
$$I(u)=intfrac{u^2-1}{u^2+1}mathrm du$$
$$I(u)=intfrac{u^2+1}{u^2+1}mathrm du-2intfrac{mathrm du}{u^2+1}$$
$$I(u)=u-2intfrac{mathrm du}{u^2+1}$$
Using the substitution $tan t=u$, we arrive at
$$I(u)=u-2arctan u$$
And from $g(x)=I(3x)-I(2x)$,
$$g(x)=x+arctan2x-arctan3x$$
Hence
$$g'(x)=1+frac2{1+4x^2}-frac3{1+9x^2}$$
$endgroup$
$$I(u)=intfrac{u^2-1}{u^2+1}mathrm du$$
$$I(u)=intfrac{u^2+1}{u^2+1}mathrm du-2intfrac{mathrm du}{u^2+1}$$
$$I(u)=u-2intfrac{mathrm du}{u^2+1}$$
Using the substitution $tan t=u$, we arrive at
$$I(u)=u-2arctan u$$
And from $g(x)=I(3x)-I(2x)$,
$$g(x)=x+arctan2x-arctan3x$$
Hence
$$g'(x)=1+frac2{1+4x^2}-frac3{1+9x^2}$$
answered Dec 10 '18 at 3:24
clathratusclathratus
3,962334
3,962334
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033384%2ffind-the-fracddx-of-gx-int-2x3x-fracu2-1u21du%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The fourth line does not make sense: $u$ is nothing but a dummy variable.
$endgroup$
– user587192
Dec 10 '18 at 4:52