Find the $frac{d}{dx}$ of $g(x)=int_{2x}^{3x} frac{u^2-1}{u^2+1}du$












0












$begingroup$


First I split the integral



$$int_{2x}^{0} f(u)du+int_{0}^{3x}f(u)du$$
Then differentiate with respect to x
$$frac{d}{du}left[int_{2x}^{0}f(u)du+ int_{0}^{3x}f(u)duright]frac{dx}{du}$$
In my notes after diff. with respect to x I have
$$f'(x)=frac{4x}{(x^2+1)^2}$$
$$f'(2x)=frac{8x}{(2x^2+1)^2}$$
$$f'(3x)=frac{12x}{(3x^2+1)^2}$$
Then for an answer I get
$$g'(x)=frac{-2(4x^2-1)}{4x^2+1}+frac{3(9x^2-1}{9x^2+1}$$



And I can't understand how I arrived at that answer.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The fourth line does not make sense: $u$ is nothing but a dummy variable.
    $endgroup$
    – user587192
    Dec 10 '18 at 4:52
















0












$begingroup$


First I split the integral



$$int_{2x}^{0} f(u)du+int_{0}^{3x}f(u)du$$
Then differentiate with respect to x
$$frac{d}{du}left[int_{2x}^{0}f(u)du+ int_{0}^{3x}f(u)duright]frac{dx}{du}$$
In my notes after diff. with respect to x I have
$$f'(x)=frac{4x}{(x^2+1)^2}$$
$$f'(2x)=frac{8x}{(2x^2+1)^2}$$
$$f'(3x)=frac{12x}{(3x^2+1)^2}$$
Then for an answer I get
$$g'(x)=frac{-2(4x^2-1)}{4x^2+1}+frac{3(9x^2-1}{9x^2+1}$$



And I can't understand how I arrived at that answer.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The fourth line does not make sense: $u$ is nothing but a dummy variable.
    $endgroup$
    – user587192
    Dec 10 '18 at 4:52














0












0








0





$begingroup$


First I split the integral



$$int_{2x}^{0} f(u)du+int_{0}^{3x}f(u)du$$
Then differentiate with respect to x
$$frac{d}{du}left[int_{2x}^{0}f(u)du+ int_{0}^{3x}f(u)duright]frac{dx}{du}$$
In my notes after diff. with respect to x I have
$$f'(x)=frac{4x}{(x^2+1)^2}$$
$$f'(2x)=frac{8x}{(2x^2+1)^2}$$
$$f'(3x)=frac{12x}{(3x^2+1)^2}$$
Then for an answer I get
$$g'(x)=frac{-2(4x^2-1)}{4x^2+1}+frac{3(9x^2-1}{9x^2+1}$$



And I can't understand how I arrived at that answer.










share|cite|improve this question









$endgroup$




First I split the integral



$$int_{2x}^{0} f(u)du+int_{0}^{3x}f(u)du$$
Then differentiate with respect to x
$$frac{d}{du}left[int_{2x}^{0}f(u)du+ int_{0}^{3x}f(u)duright]frac{dx}{du}$$
In my notes after diff. with respect to x I have
$$f'(x)=frac{4x}{(x^2+1)^2}$$
$$f'(2x)=frac{8x}{(2x^2+1)^2}$$
$$f'(3x)=frac{12x}{(3x^2+1)^2}$$
Then for an answer I get
$$g'(x)=frac{-2(4x^2-1)}{4x^2+1}+frac{3(9x^2-1}{9x^2+1}$$



And I can't understand how I arrived at that answer.







calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 10 '18 at 3:08









Eric BrownEric Brown

737




737












  • $begingroup$
    The fourth line does not make sense: $u$ is nothing but a dummy variable.
    $endgroup$
    – user587192
    Dec 10 '18 at 4:52


















  • $begingroup$
    The fourth line does not make sense: $u$ is nothing but a dummy variable.
    $endgroup$
    – user587192
    Dec 10 '18 at 4:52
















$begingroup$
The fourth line does not make sense: $u$ is nothing but a dummy variable.
$endgroup$
– user587192
Dec 10 '18 at 4:52




$begingroup$
The fourth line does not make sense: $u$ is nothing but a dummy variable.
$endgroup$
– user587192
Dec 10 '18 at 4:52










3 Answers
3






active

oldest

votes


















0












$begingroup$

Let $F(u)$ be a function such that $F'(u)=f(u)$ with
$$
f(u)=frac{u^2-1}{u^2+1}.
$$

The fundamental theorem of calculus tells you that
$$
g(x)=F(3x)-F(2x).
$$

Now by the chain rule you get
$$
g'(x)=3cdot F'(3x)-2F'(2x)=3f(3x)-2f(2x)=frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}.
$$





Alternatively, you could apply directly the Leibniz integral rule.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    So after plugging in I get $frac{27x^2-3}{27x^2+3}-frac{8x^2-2}{8x^2+2}$ Then how do i arrive at the answer?
    $endgroup$
    – Eric Brown
    Dec 10 '18 at 4:53












  • $begingroup$
    You did the wrong "plugging in". $3f(3x)-2f(2x)=3cdotfrac{(3x)^2-1}{(3x^2)^2+1}-2cdotfrac{(2x)^2-1}{(2x^2)^2+1}={color{red}{frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}}}$ is your answer.
    $endgroup$
    – user587192
    Dec 10 '18 at 13:25





















1












$begingroup$

Hint



$$frac{d}{dx}int_{a(x)}^{b(x)}f(u) , du=f(b(x)) frac{d}{dx}(b(x))-f(a(x)) frac{d}{dx}(a(x))$$
In your case $a(x)=2x, b(x)=3x$ and $f(u)=frac{u^2-1}{u^2+1}$. You don't need the derivatives of $f$ that you have computed.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    so I sub in 3x for u to get $3x^2$?
    $endgroup$
    – Eric Brown
    Dec 10 '18 at 3:44










  • $begingroup$
    @EricBrown Actually $f(3x)=frac{(3x)^2-1}{(3x)^2+1}$.
    $endgroup$
    – Anurag A
    Dec 10 '18 at 3:48












  • $begingroup$
    so after plugging in I get $frac{9x^2-1}{9x^2+1}(3)-frac{4x^2-1}{4x^2+1}(2)$. Then I multiply the two fractions to get $$frac{27x^2-3}{27x^3+3}-frac{8x^2-2}{8x^2+2}$$
    $endgroup$
    – Eric Brown
    Dec 10 '18 at 4:00












  • $begingroup$
    @EricBrown Yes that's correct.
    $endgroup$
    – Anurag A
    Dec 10 '18 at 4:02










  • $begingroup$
    Do I still need to integrate the two fractions?
    $endgroup$
    – Eric Brown
    Dec 10 '18 at 4:35



















1












$begingroup$

$$I(u)=intfrac{u^2-1}{u^2+1}mathrm du$$
$$I(u)=intfrac{u^2+1}{u^2+1}mathrm du-2intfrac{mathrm du}{u^2+1}$$
$$I(u)=u-2intfrac{mathrm du}{u^2+1}$$
Using the substitution $tan t=u$, we arrive at
$$I(u)=u-2arctan u$$
And from $g(x)=I(3x)-I(2x)$,
$$g(x)=x+arctan2x-arctan3x$$
Hence
$$g'(x)=1+frac2{1+4x^2}-frac3{1+9x^2}$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033384%2ffind-the-fracddx-of-gx-int-2x3x-fracu2-1u21du%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Let $F(u)$ be a function such that $F'(u)=f(u)$ with
    $$
    f(u)=frac{u^2-1}{u^2+1}.
    $$

    The fundamental theorem of calculus tells you that
    $$
    g(x)=F(3x)-F(2x).
    $$

    Now by the chain rule you get
    $$
    g'(x)=3cdot F'(3x)-2F'(2x)=3f(3x)-2f(2x)=frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}.
    $$





    Alternatively, you could apply directly the Leibniz integral rule.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      So after plugging in I get $frac{27x^2-3}{27x^2+3}-frac{8x^2-2}{8x^2+2}$ Then how do i arrive at the answer?
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 4:53












    • $begingroup$
      You did the wrong "plugging in". $3f(3x)-2f(2x)=3cdotfrac{(3x)^2-1}{(3x^2)^2+1}-2cdotfrac{(2x)^2-1}{(2x^2)^2+1}={color{red}{frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}}}$ is your answer.
      $endgroup$
      – user587192
      Dec 10 '18 at 13:25


















    0












    $begingroup$

    Let $F(u)$ be a function such that $F'(u)=f(u)$ with
    $$
    f(u)=frac{u^2-1}{u^2+1}.
    $$

    The fundamental theorem of calculus tells you that
    $$
    g(x)=F(3x)-F(2x).
    $$

    Now by the chain rule you get
    $$
    g'(x)=3cdot F'(3x)-2F'(2x)=3f(3x)-2f(2x)=frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}.
    $$





    Alternatively, you could apply directly the Leibniz integral rule.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      So after plugging in I get $frac{27x^2-3}{27x^2+3}-frac{8x^2-2}{8x^2+2}$ Then how do i arrive at the answer?
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 4:53












    • $begingroup$
      You did the wrong "plugging in". $3f(3x)-2f(2x)=3cdotfrac{(3x)^2-1}{(3x^2)^2+1}-2cdotfrac{(2x)^2-1}{(2x^2)^2+1}={color{red}{frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}}}$ is your answer.
      $endgroup$
      – user587192
      Dec 10 '18 at 13:25
















    0












    0








    0





    $begingroup$

    Let $F(u)$ be a function such that $F'(u)=f(u)$ with
    $$
    f(u)=frac{u^2-1}{u^2+1}.
    $$

    The fundamental theorem of calculus tells you that
    $$
    g(x)=F(3x)-F(2x).
    $$

    Now by the chain rule you get
    $$
    g'(x)=3cdot F'(3x)-2F'(2x)=3f(3x)-2f(2x)=frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}.
    $$





    Alternatively, you could apply directly the Leibniz integral rule.






    share|cite|improve this answer









    $endgroup$



    Let $F(u)$ be a function such that $F'(u)=f(u)$ with
    $$
    f(u)=frac{u^2-1}{u^2+1}.
    $$

    The fundamental theorem of calculus tells you that
    $$
    g(x)=F(3x)-F(2x).
    $$

    Now by the chain rule you get
    $$
    g'(x)=3cdot F'(3x)-2F'(2x)=3f(3x)-2f(2x)=frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}.
    $$





    Alternatively, you could apply directly the Leibniz integral rule.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 10 '18 at 4:48









    user587192user587192

    1,868315




    1,868315












    • $begingroup$
      So after plugging in I get $frac{27x^2-3}{27x^2+3}-frac{8x^2-2}{8x^2+2}$ Then how do i arrive at the answer?
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 4:53












    • $begingroup$
      You did the wrong "plugging in". $3f(3x)-2f(2x)=3cdotfrac{(3x)^2-1}{(3x^2)^2+1}-2cdotfrac{(2x)^2-1}{(2x^2)^2+1}={color{red}{frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}}}$ is your answer.
      $endgroup$
      – user587192
      Dec 10 '18 at 13:25




















    • $begingroup$
      So after plugging in I get $frac{27x^2-3}{27x^2+3}-frac{8x^2-2}{8x^2+2}$ Then how do i arrive at the answer?
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 4:53












    • $begingroup$
      You did the wrong "plugging in". $3f(3x)-2f(2x)=3cdotfrac{(3x)^2-1}{(3x^2)^2+1}-2cdotfrac{(2x)^2-1}{(2x^2)^2+1}={color{red}{frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}}}$ is your answer.
      $endgroup$
      – user587192
      Dec 10 '18 at 13:25


















    $begingroup$
    So after plugging in I get $frac{27x^2-3}{27x^2+3}-frac{8x^2-2}{8x^2+2}$ Then how do i arrive at the answer?
    $endgroup$
    – Eric Brown
    Dec 10 '18 at 4:53






    $begingroup$
    So after plugging in I get $frac{27x^2-3}{27x^2+3}-frac{8x^2-2}{8x^2+2}$ Then how do i arrive at the answer?
    $endgroup$
    – Eric Brown
    Dec 10 '18 at 4:53














    $begingroup$
    You did the wrong "plugging in". $3f(3x)-2f(2x)=3cdotfrac{(3x)^2-1}{(3x^2)^2+1}-2cdotfrac{(2x)^2-1}{(2x^2)^2+1}={color{red}{frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}}}$ is your answer.
    $endgroup$
    – user587192
    Dec 10 '18 at 13:25






    $begingroup$
    You did the wrong "plugging in". $3f(3x)-2f(2x)=3cdotfrac{(3x)^2-1}{(3x^2)^2+1}-2cdotfrac{(2x)^2-1}{(2x^2)^2+1}={color{red}{frac{3(9x^2-1)}{9x^2+1}-frac{2(4x^2-1)}{4x^2+1}}}$ is your answer.
    $endgroup$
    – user587192
    Dec 10 '18 at 13:25













    1












    $begingroup$

    Hint



    $$frac{d}{dx}int_{a(x)}^{b(x)}f(u) , du=f(b(x)) frac{d}{dx}(b(x))-f(a(x)) frac{d}{dx}(a(x))$$
    In your case $a(x)=2x, b(x)=3x$ and $f(u)=frac{u^2-1}{u^2+1}$. You don't need the derivatives of $f$ that you have computed.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      so I sub in 3x for u to get $3x^2$?
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 3:44










    • $begingroup$
      @EricBrown Actually $f(3x)=frac{(3x)^2-1}{(3x)^2+1}$.
      $endgroup$
      – Anurag A
      Dec 10 '18 at 3:48












    • $begingroup$
      so after plugging in I get $frac{9x^2-1}{9x^2+1}(3)-frac{4x^2-1}{4x^2+1}(2)$. Then I multiply the two fractions to get $$frac{27x^2-3}{27x^3+3}-frac{8x^2-2}{8x^2+2}$$
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 4:00












    • $begingroup$
      @EricBrown Yes that's correct.
      $endgroup$
      – Anurag A
      Dec 10 '18 at 4:02










    • $begingroup$
      Do I still need to integrate the two fractions?
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 4:35
















    1












    $begingroup$

    Hint



    $$frac{d}{dx}int_{a(x)}^{b(x)}f(u) , du=f(b(x)) frac{d}{dx}(b(x))-f(a(x)) frac{d}{dx}(a(x))$$
    In your case $a(x)=2x, b(x)=3x$ and $f(u)=frac{u^2-1}{u^2+1}$. You don't need the derivatives of $f$ that you have computed.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      so I sub in 3x for u to get $3x^2$?
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 3:44










    • $begingroup$
      @EricBrown Actually $f(3x)=frac{(3x)^2-1}{(3x)^2+1}$.
      $endgroup$
      – Anurag A
      Dec 10 '18 at 3:48












    • $begingroup$
      so after plugging in I get $frac{9x^2-1}{9x^2+1}(3)-frac{4x^2-1}{4x^2+1}(2)$. Then I multiply the two fractions to get $$frac{27x^2-3}{27x^3+3}-frac{8x^2-2}{8x^2+2}$$
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 4:00












    • $begingroup$
      @EricBrown Yes that's correct.
      $endgroup$
      – Anurag A
      Dec 10 '18 at 4:02










    • $begingroup$
      Do I still need to integrate the two fractions?
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 4:35














    1












    1








    1





    $begingroup$

    Hint



    $$frac{d}{dx}int_{a(x)}^{b(x)}f(u) , du=f(b(x)) frac{d}{dx}(b(x))-f(a(x)) frac{d}{dx}(a(x))$$
    In your case $a(x)=2x, b(x)=3x$ and $f(u)=frac{u^2-1}{u^2+1}$. You don't need the derivatives of $f$ that you have computed.






    share|cite|improve this answer









    $endgroup$



    Hint



    $$frac{d}{dx}int_{a(x)}^{b(x)}f(u) , du=f(b(x)) frac{d}{dx}(b(x))-f(a(x)) frac{d}{dx}(a(x))$$
    In your case $a(x)=2x, b(x)=3x$ and $f(u)=frac{u^2-1}{u^2+1}$. You don't need the derivatives of $f$ that you have computed.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 10 '18 at 3:19









    Anurag AAnurag A

    26k12249




    26k12249












    • $begingroup$
      so I sub in 3x for u to get $3x^2$?
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 3:44










    • $begingroup$
      @EricBrown Actually $f(3x)=frac{(3x)^2-1}{(3x)^2+1}$.
      $endgroup$
      – Anurag A
      Dec 10 '18 at 3:48












    • $begingroup$
      so after plugging in I get $frac{9x^2-1}{9x^2+1}(3)-frac{4x^2-1}{4x^2+1}(2)$. Then I multiply the two fractions to get $$frac{27x^2-3}{27x^3+3}-frac{8x^2-2}{8x^2+2}$$
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 4:00












    • $begingroup$
      @EricBrown Yes that's correct.
      $endgroup$
      – Anurag A
      Dec 10 '18 at 4:02










    • $begingroup$
      Do I still need to integrate the two fractions?
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 4:35


















    • $begingroup$
      so I sub in 3x for u to get $3x^2$?
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 3:44










    • $begingroup$
      @EricBrown Actually $f(3x)=frac{(3x)^2-1}{(3x)^2+1}$.
      $endgroup$
      – Anurag A
      Dec 10 '18 at 3:48












    • $begingroup$
      so after plugging in I get $frac{9x^2-1}{9x^2+1}(3)-frac{4x^2-1}{4x^2+1}(2)$. Then I multiply the two fractions to get $$frac{27x^2-3}{27x^3+3}-frac{8x^2-2}{8x^2+2}$$
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 4:00












    • $begingroup$
      @EricBrown Yes that's correct.
      $endgroup$
      – Anurag A
      Dec 10 '18 at 4:02










    • $begingroup$
      Do I still need to integrate the two fractions?
      $endgroup$
      – Eric Brown
      Dec 10 '18 at 4:35
















    $begingroup$
    so I sub in 3x for u to get $3x^2$?
    $endgroup$
    – Eric Brown
    Dec 10 '18 at 3:44




    $begingroup$
    so I sub in 3x for u to get $3x^2$?
    $endgroup$
    – Eric Brown
    Dec 10 '18 at 3:44












    $begingroup$
    @EricBrown Actually $f(3x)=frac{(3x)^2-1}{(3x)^2+1}$.
    $endgroup$
    – Anurag A
    Dec 10 '18 at 3:48






    $begingroup$
    @EricBrown Actually $f(3x)=frac{(3x)^2-1}{(3x)^2+1}$.
    $endgroup$
    – Anurag A
    Dec 10 '18 at 3:48














    $begingroup$
    so after plugging in I get $frac{9x^2-1}{9x^2+1}(3)-frac{4x^2-1}{4x^2+1}(2)$. Then I multiply the two fractions to get $$frac{27x^2-3}{27x^3+3}-frac{8x^2-2}{8x^2+2}$$
    $endgroup$
    – Eric Brown
    Dec 10 '18 at 4:00






    $begingroup$
    so after plugging in I get $frac{9x^2-1}{9x^2+1}(3)-frac{4x^2-1}{4x^2+1}(2)$. Then I multiply the two fractions to get $$frac{27x^2-3}{27x^3+3}-frac{8x^2-2}{8x^2+2}$$
    $endgroup$
    – Eric Brown
    Dec 10 '18 at 4:00














    $begingroup$
    @EricBrown Yes that's correct.
    $endgroup$
    – Anurag A
    Dec 10 '18 at 4:02




    $begingroup$
    @EricBrown Yes that's correct.
    $endgroup$
    – Anurag A
    Dec 10 '18 at 4:02












    $begingroup$
    Do I still need to integrate the two fractions?
    $endgroup$
    – Eric Brown
    Dec 10 '18 at 4:35




    $begingroup$
    Do I still need to integrate the two fractions?
    $endgroup$
    – Eric Brown
    Dec 10 '18 at 4:35











    1












    $begingroup$

    $$I(u)=intfrac{u^2-1}{u^2+1}mathrm du$$
    $$I(u)=intfrac{u^2+1}{u^2+1}mathrm du-2intfrac{mathrm du}{u^2+1}$$
    $$I(u)=u-2intfrac{mathrm du}{u^2+1}$$
    Using the substitution $tan t=u$, we arrive at
    $$I(u)=u-2arctan u$$
    And from $g(x)=I(3x)-I(2x)$,
    $$g(x)=x+arctan2x-arctan3x$$
    Hence
    $$g'(x)=1+frac2{1+4x^2}-frac3{1+9x^2}$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      $$I(u)=intfrac{u^2-1}{u^2+1}mathrm du$$
      $$I(u)=intfrac{u^2+1}{u^2+1}mathrm du-2intfrac{mathrm du}{u^2+1}$$
      $$I(u)=u-2intfrac{mathrm du}{u^2+1}$$
      Using the substitution $tan t=u$, we arrive at
      $$I(u)=u-2arctan u$$
      And from $g(x)=I(3x)-I(2x)$,
      $$g(x)=x+arctan2x-arctan3x$$
      Hence
      $$g'(x)=1+frac2{1+4x^2}-frac3{1+9x^2}$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        $$I(u)=intfrac{u^2-1}{u^2+1}mathrm du$$
        $$I(u)=intfrac{u^2+1}{u^2+1}mathrm du-2intfrac{mathrm du}{u^2+1}$$
        $$I(u)=u-2intfrac{mathrm du}{u^2+1}$$
        Using the substitution $tan t=u$, we arrive at
        $$I(u)=u-2arctan u$$
        And from $g(x)=I(3x)-I(2x)$,
        $$g(x)=x+arctan2x-arctan3x$$
        Hence
        $$g'(x)=1+frac2{1+4x^2}-frac3{1+9x^2}$$






        share|cite|improve this answer









        $endgroup$



        $$I(u)=intfrac{u^2-1}{u^2+1}mathrm du$$
        $$I(u)=intfrac{u^2+1}{u^2+1}mathrm du-2intfrac{mathrm du}{u^2+1}$$
        $$I(u)=u-2intfrac{mathrm du}{u^2+1}$$
        Using the substitution $tan t=u$, we arrive at
        $$I(u)=u-2arctan u$$
        And from $g(x)=I(3x)-I(2x)$,
        $$g(x)=x+arctan2x-arctan3x$$
        Hence
        $$g'(x)=1+frac2{1+4x^2}-frac3{1+9x^2}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 10 '18 at 3:24









        clathratusclathratus

        3,962334




        3,962334






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033384%2ffind-the-fracddx-of-gx-int-2x3x-fracu2-1u21du%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen