Systems of differential equations
$begingroup$
begin{array} { c } { text { Solve the initial value problem } } \ { mathbf { x } ^ { prime } = left( begin{array} { c c } { 1 } & { - 5 } \ { 1 } & { - 3 } end{array} right) mathbf { x } , quad mathbf { x } ( 0 ) = left( begin{array} { c } { 1 } \ { 1 } end{array} right) } \ { text { and describe the behavior of the solution as } t rightarrow infty } end{array}
My answer so far is:
$$vec{x}=c_1e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}+c_2e^{(-1-i)t}begin{pmatrix}2-i\1end{pmatrix}$$
The textbook has the answer:
$$mathbf{x}(t)=e^{-t}begin{pmatrix}cos(t)-3sin(t)\ cos(t)-sin(t)end{pmatrix}$$
How can I simplify my solution?
UPDATE: I used the identity $e^{it} = cos t+isin t$
$$c_1e^{-t}(cos t+isin t)begin{pmatrix}2+i\1end{pmatrix}+c_2e^{-t}(cos t-isin t)begin{pmatrix}2-i\1end{pmatrix}$$
linear-algebra matrices ordinary-differential-equations systems-of-equations
$endgroup$
|
show 10 more comments
$begingroup$
begin{array} { c } { text { Solve the initial value problem } } \ { mathbf { x } ^ { prime } = left( begin{array} { c c } { 1 } & { - 5 } \ { 1 } & { - 3 } end{array} right) mathbf { x } , quad mathbf { x } ( 0 ) = left( begin{array} { c } { 1 } \ { 1 } end{array} right) } \ { text { and describe the behavior of the solution as } t rightarrow infty } end{array}
My answer so far is:
$$vec{x}=c_1e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}+c_2e^{(-1-i)t}begin{pmatrix}2-i\1end{pmatrix}$$
The textbook has the answer:
$$mathbf{x}(t)=e^{-t}begin{pmatrix}cos(t)-3sin(t)\ cos(t)-sin(t)end{pmatrix}$$
How can I simplify my solution?
UPDATE: I used the identity $e^{it} = cos t+isin t$
$$c_1e^{-t}(cos t+isin t)begin{pmatrix}2+i\1end{pmatrix}+c_2e^{-t}(cos t-isin t)begin{pmatrix}2-i\1end{pmatrix}$$
linear-algebra matrices ordinary-differential-equations systems-of-equations
$endgroup$
2
$begingroup$
$e^{(-1+i)t}=e^{-t}(cos t+isin t)$
$endgroup$
– Nosrati
Dec 10 '18 at 4:56
1
$begingroup$
$sin$ and $cos$ are bounded and $e^{-t}to0$ as $ttoinfty$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:01
1
$begingroup$
At first apply initial condition to renove constants $C_1$ and $C_2$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:21
1
$begingroup$
Your solution shouldn't has (have) $i$ term!
$endgroup$
– Nosrati
Dec 10 '18 at 5:29
1
$begingroup$
My method if you interest: $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$ shows $y=e^{-t}cos t$ and $y=e^{-t}sin t$
$endgroup$
– Nosrati
Dec 10 '18 at 5:44
|
show 10 more comments
$begingroup$
begin{array} { c } { text { Solve the initial value problem } } \ { mathbf { x } ^ { prime } = left( begin{array} { c c } { 1 } & { - 5 } \ { 1 } & { - 3 } end{array} right) mathbf { x } , quad mathbf { x } ( 0 ) = left( begin{array} { c } { 1 } \ { 1 } end{array} right) } \ { text { and describe the behavior of the solution as } t rightarrow infty } end{array}
My answer so far is:
$$vec{x}=c_1e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}+c_2e^{(-1-i)t}begin{pmatrix}2-i\1end{pmatrix}$$
The textbook has the answer:
$$mathbf{x}(t)=e^{-t}begin{pmatrix}cos(t)-3sin(t)\ cos(t)-sin(t)end{pmatrix}$$
How can I simplify my solution?
UPDATE: I used the identity $e^{it} = cos t+isin t$
$$c_1e^{-t}(cos t+isin t)begin{pmatrix}2+i\1end{pmatrix}+c_2e^{-t}(cos t-isin t)begin{pmatrix}2-i\1end{pmatrix}$$
linear-algebra matrices ordinary-differential-equations systems-of-equations
$endgroup$
begin{array} { c } { text { Solve the initial value problem } } \ { mathbf { x } ^ { prime } = left( begin{array} { c c } { 1 } & { - 5 } \ { 1 } & { - 3 } end{array} right) mathbf { x } , quad mathbf { x } ( 0 ) = left( begin{array} { c } { 1 } \ { 1 } end{array} right) } \ { text { and describe the behavior of the solution as } t rightarrow infty } end{array}
My answer so far is:
$$vec{x}=c_1e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}+c_2e^{(-1-i)t}begin{pmatrix}2-i\1end{pmatrix}$$
The textbook has the answer:
$$mathbf{x}(t)=e^{-t}begin{pmatrix}cos(t)-3sin(t)\ cos(t)-sin(t)end{pmatrix}$$
How can I simplify my solution?
UPDATE: I used the identity $e^{it} = cos t+isin t$
$$c_1e^{-t}(cos t+isin t)begin{pmatrix}2+i\1end{pmatrix}+c_2e^{-t}(cos t-isin t)begin{pmatrix}2-i\1end{pmatrix}$$
linear-algebra matrices ordinary-differential-equations systems-of-equations
linear-algebra matrices ordinary-differential-equations systems-of-equations
edited Dec 10 '18 at 7:17
Robert Howard
1,9161822
1,9161822
asked Dec 10 '18 at 4:44
DoldrumsDoldrums
829
829
2
$begingroup$
$e^{(-1+i)t}=e^{-t}(cos t+isin t)$
$endgroup$
– Nosrati
Dec 10 '18 at 4:56
1
$begingroup$
$sin$ and $cos$ are bounded and $e^{-t}to0$ as $ttoinfty$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:01
1
$begingroup$
At first apply initial condition to renove constants $C_1$ and $C_2$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:21
1
$begingroup$
Your solution shouldn't has (have) $i$ term!
$endgroup$
– Nosrati
Dec 10 '18 at 5:29
1
$begingroup$
My method if you interest: $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$ shows $y=e^{-t}cos t$ and $y=e^{-t}sin t$
$endgroup$
– Nosrati
Dec 10 '18 at 5:44
|
show 10 more comments
2
$begingroup$
$e^{(-1+i)t}=e^{-t}(cos t+isin t)$
$endgroup$
– Nosrati
Dec 10 '18 at 4:56
1
$begingroup$
$sin$ and $cos$ are bounded and $e^{-t}to0$ as $ttoinfty$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:01
1
$begingroup$
At first apply initial condition to renove constants $C_1$ and $C_2$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:21
1
$begingroup$
Your solution shouldn't has (have) $i$ term!
$endgroup$
– Nosrati
Dec 10 '18 at 5:29
1
$begingroup$
My method if you interest: $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$ shows $y=e^{-t}cos t$ and $y=e^{-t}sin t$
$endgroup$
– Nosrati
Dec 10 '18 at 5:44
2
2
$begingroup$
$e^{(-1+i)t}=e^{-t}(cos t+isin t)$
$endgroup$
– Nosrati
Dec 10 '18 at 4:56
$begingroup$
$e^{(-1+i)t}=e^{-t}(cos t+isin t)$
$endgroup$
– Nosrati
Dec 10 '18 at 4:56
1
1
$begingroup$
$sin$ and $cos$ are bounded and $e^{-t}to0$ as $ttoinfty$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:01
$begingroup$
$sin$ and $cos$ are bounded and $e^{-t}to0$ as $ttoinfty$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:01
1
1
$begingroup$
At first apply initial condition to renove constants $C_1$ and $C_2$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:21
$begingroup$
At first apply initial condition to renove constants $C_1$ and $C_2$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:21
1
1
$begingroup$
Your solution shouldn't has (have) $i$ term!
$endgroup$
– Nosrati
Dec 10 '18 at 5:29
$begingroup$
Your solution shouldn't has (have) $i$ term!
$endgroup$
– Nosrati
Dec 10 '18 at 5:29
1
1
$begingroup$
My method if you interest: $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$ shows $y=e^{-t}cos t$ and $y=e^{-t}sin t$
$endgroup$
– Nosrati
Dec 10 '18 at 5:44
$begingroup$
My method if you interest: $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$ shows $y=e^{-t}cos t$ and $y=e^{-t}sin t$
$endgroup$
– Nosrati
Dec 10 '18 at 5:44
|
show 10 more comments
2 Answers
2
active
oldest
votes
$begingroup$
Let
$$X=e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}$$
$$X_1=Re(X)=e^{-t}begin{pmatrix}2 cos{(t)}-sin{(t)}\
cos{(t)}end{pmatrix}$$
$$X_2=Im(X)= e^{-t}begin{pmatrix}2 sin{(t)}+cos{(t)}\
sin{(t)}end{pmatrix}$$
Then general real solution is
$$X=c_1X_1+c_2X_2$$
From initial condition we get
$$c_1begin{pmatrix}2\
1end{pmatrix}+c_2begin{pmatrix}1\
0end{pmatrix}=begin{pmatrix}1\
1end{pmatrix}$$
$c_1=1$, $c_2=-1$.
Answer:
$$X=X_1-X_2=e^{-t}begin{pmatrix}cos{(t)}-3 sin{(t)}\
cos{(t)}-sin{(t)}end{pmatrix}$$
$endgroup$
add a comment |
$begingroup$
$x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$. Hence by characteristic equation $lambda^2+2lambda+2=0$, $lambda=-1pm i$. This shows solutions $y=e^{-t}cos t$ and $y=e^{-t}sin t$.
Now replacing $x=y'+3y$ gives $x=2e^{-t}cos t-e^{-t}sin t$ and $x=e^{-t}cos t+2e^{-t}sin t$.
Therefore general solution is
begin{cases}
x=C_1(2e^{-t}cos t-e^{-t}sin t)+C_2(e^{-t}cos t+2e^{-t}sin t),\
y=C_1e^{-t}cos t+C_2e^{-t}sin t.
end{cases}
with initial condition $C_1=1$ and $C_2=-1$, we have particular solution
begin{cases}
x=e^{-t}cos t-3e^{-t}sin t,\
y=e^{-t}cos t-e^{-t}sin t.
end{cases}
the behaviour of solution is $|mathrm{x}|to0$, because
begin{cases}
|x|=|e^{-t}cos t-3e^{-t}sin t|leqsqrt{10}e^{-t}to0,\
|y|=|e^{-t}cos t-e^{-t}sin t|leqsqrt{2}e^{-t}to0.
end{cases}
as $ttoinfty$.
$endgroup$
$begingroup$
,Your answer to behaviour of solutions as $trightarrow 0$ contains inequalities. Those inequalities contains$sqrt{10}e^{-t}$ and $sqrt{2}e^{-t}$.My question is why did you select those terms?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 15:21
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033452%2fsystems-of-differential-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let
$$X=e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}$$
$$X_1=Re(X)=e^{-t}begin{pmatrix}2 cos{(t)}-sin{(t)}\
cos{(t)}end{pmatrix}$$
$$X_2=Im(X)= e^{-t}begin{pmatrix}2 sin{(t)}+cos{(t)}\
sin{(t)}end{pmatrix}$$
Then general real solution is
$$X=c_1X_1+c_2X_2$$
From initial condition we get
$$c_1begin{pmatrix}2\
1end{pmatrix}+c_2begin{pmatrix}1\
0end{pmatrix}=begin{pmatrix}1\
1end{pmatrix}$$
$c_1=1$, $c_2=-1$.
Answer:
$$X=X_1-X_2=e^{-t}begin{pmatrix}cos{(t)}-3 sin{(t)}\
cos{(t)}-sin{(t)}end{pmatrix}$$
$endgroup$
add a comment |
$begingroup$
Let
$$X=e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}$$
$$X_1=Re(X)=e^{-t}begin{pmatrix}2 cos{(t)}-sin{(t)}\
cos{(t)}end{pmatrix}$$
$$X_2=Im(X)= e^{-t}begin{pmatrix}2 sin{(t)}+cos{(t)}\
sin{(t)}end{pmatrix}$$
Then general real solution is
$$X=c_1X_1+c_2X_2$$
From initial condition we get
$$c_1begin{pmatrix}2\
1end{pmatrix}+c_2begin{pmatrix}1\
0end{pmatrix}=begin{pmatrix}1\
1end{pmatrix}$$
$c_1=1$, $c_2=-1$.
Answer:
$$X=X_1-X_2=e^{-t}begin{pmatrix}cos{(t)}-3 sin{(t)}\
cos{(t)}-sin{(t)}end{pmatrix}$$
$endgroup$
add a comment |
$begingroup$
Let
$$X=e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}$$
$$X_1=Re(X)=e^{-t}begin{pmatrix}2 cos{(t)}-sin{(t)}\
cos{(t)}end{pmatrix}$$
$$X_2=Im(X)= e^{-t}begin{pmatrix}2 sin{(t)}+cos{(t)}\
sin{(t)}end{pmatrix}$$
Then general real solution is
$$X=c_1X_1+c_2X_2$$
From initial condition we get
$$c_1begin{pmatrix}2\
1end{pmatrix}+c_2begin{pmatrix}1\
0end{pmatrix}=begin{pmatrix}1\
1end{pmatrix}$$
$c_1=1$, $c_2=-1$.
Answer:
$$X=X_1-X_2=e^{-t}begin{pmatrix}cos{(t)}-3 sin{(t)}\
cos{(t)}-sin{(t)}end{pmatrix}$$
$endgroup$
Let
$$X=e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}$$
$$X_1=Re(X)=e^{-t}begin{pmatrix}2 cos{(t)}-sin{(t)}\
cos{(t)}end{pmatrix}$$
$$X_2=Im(X)= e^{-t}begin{pmatrix}2 sin{(t)}+cos{(t)}\
sin{(t)}end{pmatrix}$$
Then general real solution is
$$X=c_1X_1+c_2X_2$$
From initial condition we get
$$c_1begin{pmatrix}2\
1end{pmatrix}+c_2begin{pmatrix}1\
0end{pmatrix}=begin{pmatrix}1\
1end{pmatrix}$$
$c_1=1$, $c_2=-1$.
Answer:
$$X=X_1-X_2=e^{-t}begin{pmatrix}cos{(t)}-3 sin{(t)}\
cos{(t)}-sin{(t)}end{pmatrix}$$
answered Dec 10 '18 at 13:41
Aleksas DomarkasAleksas Domarkas
1,0476
1,0476
add a comment |
add a comment |
$begingroup$
$x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$. Hence by characteristic equation $lambda^2+2lambda+2=0$, $lambda=-1pm i$. This shows solutions $y=e^{-t}cos t$ and $y=e^{-t}sin t$.
Now replacing $x=y'+3y$ gives $x=2e^{-t}cos t-e^{-t}sin t$ and $x=e^{-t}cos t+2e^{-t}sin t$.
Therefore general solution is
begin{cases}
x=C_1(2e^{-t}cos t-e^{-t}sin t)+C_2(e^{-t}cos t+2e^{-t}sin t),\
y=C_1e^{-t}cos t+C_2e^{-t}sin t.
end{cases}
with initial condition $C_1=1$ and $C_2=-1$, we have particular solution
begin{cases}
x=e^{-t}cos t-3e^{-t}sin t,\
y=e^{-t}cos t-e^{-t}sin t.
end{cases}
the behaviour of solution is $|mathrm{x}|to0$, because
begin{cases}
|x|=|e^{-t}cos t-3e^{-t}sin t|leqsqrt{10}e^{-t}to0,\
|y|=|e^{-t}cos t-e^{-t}sin t|leqsqrt{2}e^{-t}to0.
end{cases}
as $ttoinfty$.
$endgroup$
$begingroup$
,Your answer to behaviour of solutions as $trightarrow 0$ contains inequalities. Those inequalities contains$sqrt{10}e^{-t}$ and $sqrt{2}e^{-t}$.My question is why did you select those terms?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 15:21
add a comment |
$begingroup$
$x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$. Hence by characteristic equation $lambda^2+2lambda+2=0$, $lambda=-1pm i$. This shows solutions $y=e^{-t}cos t$ and $y=e^{-t}sin t$.
Now replacing $x=y'+3y$ gives $x=2e^{-t}cos t-e^{-t}sin t$ and $x=e^{-t}cos t+2e^{-t}sin t$.
Therefore general solution is
begin{cases}
x=C_1(2e^{-t}cos t-e^{-t}sin t)+C_2(e^{-t}cos t+2e^{-t}sin t),\
y=C_1e^{-t}cos t+C_2e^{-t}sin t.
end{cases}
with initial condition $C_1=1$ and $C_2=-1$, we have particular solution
begin{cases}
x=e^{-t}cos t-3e^{-t}sin t,\
y=e^{-t}cos t-e^{-t}sin t.
end{cases}
the behaviour of solution is $|mathrm{x}|to0$, because
begin{cases}
|x|=|e^{-t}cos t-3e^{-t}sin t|leqsqrt{10}e^{-t}to0,\
|y|=|e^{-t}cos t-e^{-t}sin t|leqsqrt{2}e^{-t}to0.
end{cases}
as $ttoinfty$.
$endgroup$
$begingroup$
,Your answer to behaviour of solutions as $trightarrow 0$ contains inequalities. Those inequalities contains$sqrt{10}e^{-t}$ and $sqrt{2}e^{-t}$.My question is why did you select those terms?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 15:21
add a comment |
$begingroup$
$x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$. Hence by characteristic equation $lambda^2+2lambda+2=0$, $lambda=-1pm i$. This shows solutions $y=e^{-t}cos t$ and $y=e^{-t}sin t$.
Now replacing $x=y'+3y$ gives $x=2e^{-t}cos t-e^{-t}sin t$ and $x=e^{-t}cos t+2e^{-t}sin t$.
Therefore general solution is
begin{cases}
x=C_1(2e^{-t}cos t-e^{-t}sin t)+C_2(e^{-t}cos t+2e^{-t}sin t),\
y=C_1e^{-t}cos t+C_2e^{-t}sin t.
end{cases}
with initial condition $C_1=1$ and $C_2=-1$, we have particular solution
begin{cases}
x=e^{-t}cos t-3e^{-t}sin t,\
y=e^{-t}cos t-e^{-t}sin t.
end{cases}
the behaviour of solution is $|mathrm{x}|to0$, because
begin{cases}
|x|=|e^{-t}cos t-3e^{-t}sin t|leqsqrt{10}e^{-t}to0,\
|y|=|e^{-t}cos t-e^{-t}sin t|leqsqrt{2}e^{-t}to0.
end{cases}
as $ttoinfty$.
$endgroup$
$x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$. Hence by characteristic equation $lambda^2+2lambda+2=0$, $lambda=-1pm i$. This shows solutions $y=e^{-t}cos t$ and $y=e^{-t}sin t$.
Now replacing $x=y'+3y$ gives $x=2e^{-t}cos t-e^{-t}sin t$ and $x=e^{-t}cos t+2e^{-t}sin t$.
Therefore general solution is
begin{cases}
x=C_1(2e^{-t}cos t-e^{-t}sin t)+C_2(e^{-t}cos t+2e^{-t}sin t),\
y=C_1e^{-t}cos t+C_2e^{-t}sin t.
end{cases}
with initial condition $C_1=1$ and $C_2=-1$, we have particular solution
begin{cases}
x=e^{-t}cos t-3e^{-t}sin t,\
y=e^{-t}cos t-e^{-t}sin t.
end{cases}
the behaviour of solution is $|mathrm{x}|to0$, because
begin{cases}
|x|=|e^{-t}cos t-3e^{-t}sin t|leqsqrt{10}e^{-t}to0,\
|y|=|e^{-t}cos t-e^{-t}sin t|leqsqrt{2}e^{-t}to0.
end{cases}
as $ttoinfty$.
answered Dec 10 '18 at 6:13
NosratiNosrati
26.5k62354
26.5k62354
$begingroup$
,Your answer to behaviour of solutions as $trightarrow 0$ contains inequalities. Those inequalities contains$sqrt{10}e^{-t}$ and $sqrt{2}e^{-t}$.My question is why did you select those terms?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 15:21
add a comment |
$begingroup$
,Your answer to behaviour of solutions as $trightarrow 0$ contains inequalities. Those inequalities contains$sqrt{10}e^{-t}$ and $sqrt{2}e^{-t}$.My question is why did you select those terms?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 15:21
$begingroup$
,Your answer to behaviour of solutions as $trightarrow 0$ contains inequalities. Those inequalities contains$sqrt{10}e^{-t}$ and $sqrt{2}e^{-t}$.My question is why did you select those terms?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 15:21
$begingroup$
,Your answer to behaviour of solutions as $trightarrow 0$ contains inequalities. Those inequalities contains$sqrt{10}e^{-t}$ and $sqrt{2}e^{-t}$.My question is why did you select those terms?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 15:21
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033452%2fsystems-of-differential-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
$e^{(-1+i)t}=e^{-t}(cos t+isin t)$
$endgroup$
– Nosrati
Dec 10 '18 at 4:56
1
$begingroup$
$sin$ and $cos$ are bounded and $e^{-t}to0$ as $ttoinfty$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:01
1
$begingroup$
At first apply initial condition to renove constants $C_1$ and $C_2$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:21
1
$begingroup$
Your solution shouldn't has (have) $i$ term!
$endgroup$
– Nosrati
Dec 10 '18 at 5:29
1
$begingroup$
My method if you interest: $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$ shows $y=e^{-t}cos t$ and $y=e^{-t}sin t$
$endgroup$
– Nosrati
Dec 10 '18 at 5:44