Systems of differential equations












1












$begingroup$



begin{array} { c } { text { Solve the initial value problem } } \ { mathbf { x } ^ { prime } = left( begin{array} { c c } { 1 } & { - 5 } \ { 1 } & { - 3 } end{array} right) mathbf { x } , quad mathbf { x } ( 0 ) = left( begin{array} { c } { 1 } \ { 1 } end{array} right) } \ { text { and describe the behavior of the solution as } t rightarrow infty } end{array}




My answer so far is:
$$vec{x}=c_1e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}+c_2e^{(-1-i)t}begin{pmatrix}2-i\1end{pmatrix}$$



The textbook has the answer:
$$mathbf{x}(t)=e^{-t}begin{pmatrix}cos(t)-3sin(t)\ cos(t)-sin(t)end{pmatrix}$$



How can I simplify my solution?



UPDATE: I used the identity $e^{it} = cos t+isin t$
$$c_1e^{-t}(cos t+isin t)begin{pmatrix}2+i\1end{pmatrix}+c_2e^{-t}(cos t-isin t)begin{pmatrix}2-i\1end{pmatrix}$$










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    $e^{(-1+i)t}=e^{-t}(cos t+isin t)$
    $endgroup$
    – Nosrati
    Dec 10 '18 at 4:56






  • 1




    $begingroup$
    $sin$ and $cos$ are bounded and $e^{-t}to0$ as $ttoinfty$.
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:01






  • 1




    $begingroup$
    At first apply initial condition to renove constants $C_1$ and $C_2$.
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:21






  • 1




    $begingroup$
    Your solution shouldn't has (have) $i$ term!
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:29








  • 1




    $begingroup$
    My method if you interest: $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$ shows $y=e^{-t}cos t$ and $y=e^{-t}sin t$
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:44


















1












$begingroup$



begin{array} { c } { text { Solve the initial value problem } } \ { mathbf { x } ^ { prime } = left( begin{array} { c c } { 1 } & { - 5 } \ { 1 } & { - 3 } end{array} right) mathbf { x } , quad mathbf { x } ( 0 ) = left( begin{array} { c } { 1 } \ { 1 } end{array} right) } \ { text { and describe the behavior of the solution as } t rightarrow infty } end{array}




My answer so far is:
$$vec{x}=c_1e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}+c_2e^{(-1-i)t}begin{pmatrix}2-i\1end{pmatrix}$$



The textbook has the answer:
$$mathbf{x}(t)=e^{-t}begin{pmatrix}cos(t)-3sin(t)\ cos(t)-sin(t)end{pmatrix}$$



How can I simplify my solution?



UPDATE: I used the identity $e^{it} = cos t+isin t$
$$c_1e^{-t}(cos t+isin t)begin{pmatrix}2+i\1end{pmatrix}+c_2e^{-t}(cos t-isin t)begin{pmatrix}2-i\1end{pmatrix}$$










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    $e^{(-1+i)t}=e^{-t}(cos t+isin t)$
    $endgroup$
    – Nosrati
    Dec 10 '18 at 4:56






  • 1




    $begingroup$
    $sin$ and $cos$ are bounded and $e^{-t}to0$ as $ttoinfty$.
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:01






  • 1




    $begingroup$
    At first apply initial condition to renove constants $C_1$ and $C_2$.
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:21






  • 1




    $begingroup$
    Your solution shouldn't has (have) $i$ term!
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:29








  • 1




    $begingroup$
    My method if you interest: $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$ shows $y=e^{-t}cos t$ and $y=e^{-t}sin t$
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:44
















1












1








1


1



$begingroup$



begin{array} { c } { text { Solve the initial value problem } } \ { mathbf { x } ^ { prime } = left( begin{array} { c c } { 1 } & { - 5 } \ { 1 } & { - 3 } end{array} right) mathbf { x } , quad mathbf { x } ( 0 ) = left( begin{array} { c } { 1 } \ { 1 } end{array} right) } \ { text { and describe the behavior of the solution as } t rightarrow infty } end{array}




My answer so far is:
$$vec{x}=c_1e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}+c_2e^{(-1-i)t}begin{pmatrix}2-i\1end{pmatrix}$$



The textbook has the answer:
$$mathbf{x}(t)=e^{-t}begin{pmatrix}cos(t)-3sin(t)\ cos(t)-sin(t)end{pmatrix}$$



How can I simplify my solution?



UPDATE: I used the identity $e^{it} = cos t+isin t$
$$c_1e^{-t}(cos t+isin t)begin{pmatrix}2+i\1end{pmatrix}+c_2e^{-t}(cos t-isin t)begin{pmatrix}2-i\1end{pmatrix}$$










share|cite|improve this question











$endgroup$





begin{array} { c } { text { Solve the initial value problem } } \ { mathbf { x } ^ { prime } = left( begin{array} { c c } { 1 } & { - 5 } \ { 1 } & { - 3 } end{array} right) mathbf { x } , quad mathbf { x } ( 0 ) = left( begin{array} { c } { 1 } \ { 1 } end{array} right) } \ { text { and describe the behavior of the solution as } t rightarrow infty } end{array}




My answer so far is:
$$vec{x}=c_1e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}+c_2e^{(-1-i)t}begin{pmatrix}2-i\1end{pmatrix}$$



The textbook has the answer:
$$mathbf{x}(t)=e^{-t}begin{pmatrix}cos(t)-3sin(t)\ cos(t)-sin(t)end{pmatrix}$$



How can I simplify my solution?



UPDATE: I used the identity $e^{it} = cos t+isin t$
$$c_1e^{-t}(cos t+isin t)begin{pmatrix}2+i\1end{pmatrix}+c_2e^{-t}(cos t-isin t)begin{pmatrix}2-i\1end{pmatrix}$$







linear-algebra matrices ordinary-differential-equations systems-of-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 10 '18 at 7:17









Robert Howard

1,9161822




1,9161822










asked Dec 10 '18 at 4:44









DoldrumsDoldrums

829




829








  • 2




    $begingroup$
    $e^{(-1+i)t}=e^{-t}(cos t+isin t)$
    $endgroup$
    – Nosrati
    Dec 10 '18 at 4:56






  • 1




    $begingroup$
    $sin$ and $cos$ are bounded and $e^{-t}to0$ as $ttoinfty$.
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:01






  • 1




    $begingroup$
    At first apply initial condition to renove constants $C_1$ and $C_2$.
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:21






  • 1




    $begingroup$
    Your solution shouldn't has (have) $i$ term!
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:29








  • 1




    $begingroup$
    My method if you interest: $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$ shows $y=e^{-t}cos t$ and $y=e^{-t}sin t$
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:44
















  • 2




    $begingroup$
    $e^{(-1+i)t}=e^{-t}(cos t+isin t)$
    $endgroup$
    – Nosrati
    Dec 10 '18 at 4:56






  • 1




    $begingroup$
    $sin$ and $cos$ are bounded and $e^{-t}to0$ as $ttoinfty$.
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:01






  • 1




    $begingroup$
    At first apply initial condition to renove constants $C_1$ and $C_2$.
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:21






  • 1




    $begingroup$
    Your solution shouldn't has (have) $i$ term!
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:29








  • 1




    $begingroup$
    My method if you interest: $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$ shows $y=e^{-t}cos t$ and $y=e^{-t}sin t$
    $endgroup$
    – Nosrati
    Dec 10 '18 at 5:44










2




2




$begingroup$
$e^{(-1+i)t}=e^{-t}(cos t+isin t)$
$endgroup$
– Nosrati
Dec 10 '18 at 4:56




$begingroup$
$e^{(-1+i)t}=e^{-t}(cos t+isin t)$
$endgroup$
– Nosrati
Dec 10 '18 at 4:56




1




1




$begingroup$
$sin$ and $cos$ are bounded and $e^{-t}to0$ as $ttoinfty$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:01




$begingroup$
$sin$ and $cos$ are bounded and $e^{-t}to0$ as $ttoinfty$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:01




1




1




$begingroup$
At first apply initial condition to renove constants $C_1$ and $C_2$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:21




$begingroup$
At first apply initial condition to renove constants $C_1$ and $C_2$.
$endgroup$
– Nosrati
Dec 10 '18 at 5:21




1




1




$begingroup$
Your solution shouldn't has (have) $i$ term!
$endgroup$
– Nosrati
Dec 10 '18 at 5:29






$begingroup$
Your solution shouldn't has (have) $i$ term!
$endgroup$
– Nosrati
Dec 10 '18 at 5:29






1




1




$begingroup$
My method if you interest: $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$ shows $y=e^{-t}cos t$ and $y=e^{-t}sin t$
$endgroup$
– Nosrati
Dec 10 '18 at 5:44






$begingroup$
My method if you interest: $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$ shows $y=e^{-t}cos t$ and $y=e^{-t}sin t$
$endgroup$
– Nosrati
Dec 10 '18 at 5:44












2 Answers
2






active

oldest

votes


















1












$begingroup$

Let
$$X=e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}$$
$$X_1=Re(X)=e^{-t}begin{pmatrix}2 cos{(t)}-sin{(t)}\
cos{(t)}end{pmatrix}$$

$$X_2=Im(X)= e^{-t}begin{pmatrix}2 sin{(t)}+cos{(t)}\
sin{(t)}end{pmatrix}$$

Then general real solution is
$$X=c_1X_1+c_2X_2$$
From initial condition we get
$$c_1begin{pmatrix}2\
1end{pmatrix}+c_2begin{pmatrix}1\
0end{pmatrix}=begin{pmatrix}1\
1end{pmatrix}$$

$c_1=1$, $c_2=-1$.



Answer:
$$X=X_1-X_2=e^{-t}begin{pmatrix}cos{(t)}-3 sin{(t)}\
cos{(t)}-sin{(t)}end{pmatrix}$$






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$. Hence by characteristic equation $lambda^2+2lambda+2=0$, $lambda=-1pm i$. This shows solutions $y=e^{-t}cos t$ and $y=e^{-t}sin t$.



    Now replacing $x=y'+3y$ gives $x=2e^{-t}cos t-e^{-t}sin t$ and $x=e^{-t}cos t+2e^{-t}sin t$.



    Therefore general solution is
    begin{cases}
    x=C_1(2e^{-t}cos t-e^{-t}sin t)+C_2(e^{-t}cos t+2e^{-t}sin t),\
    y=C_1e^{-t}cos t+C_2e^{-t}sin t.
    end{cases}

    with initial condition $C_1=1$ and $C_2=-1$, we have particular solution
    begin{cases}
    x=e^{-t}cos t-3e^{-t}sin t,\
    y=e^{-t}cos t-e^{-t}sin t.
    end{cases}

    the behaviour of solution is $|mathrm{x}|to0$, because
    begin{cases}
    |x|=|e^{-t}cos t-3e^{-t}sin t|leqsqrt{10}e^{-t}to0,\
    |y|=|e^{-t}cos t-e^{-t}sin t|leqsqrt{2}e^{-t}to0.
    end{cases}

    as $ttoinfty$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      ,Your answer to behaviour of solutions as $trightarrow 0$ contains inequalities. Those inequalities contains$sqrt{10}e^{-t}$ and $sqrt{2}e^{-t}$.My question is why did you select those terms?
      $endgroup$
      – Dhamnekar Winod
      Dec 10 '18 at 15:21













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033452%2fsystems-of-differential-equations%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Let
    $$X=e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}$$
    $$X_1=Re(X)=e^{-t}begin{pmatrix}2 cos{(t)}-sin{(t)}\
    cos{(t)}end{pmatrix}$$

    $$X_2=Im(X)= e^{-t}begin{pmatrix}2 sin{(t)}+cos{(t)}\
    sin{(t)}end{pmatrix}$$

    Then general real solution is
    $$X=c_1X_1+c_2X_2$$
    From initial condition we get
    $$c_1begin{pmatrix}2\
    1end{pmatrix}+c_2begin{pmatrix}1\
    0end{pmatrix}=begin{pmatrix}1\
    1end{pmatrix}$$

    $c_1=1$, $c_2=-1$.



    Answer:
    $$X=X_1-X_2=e^{-t}begin{pmatrix}cos{(t)}-3 sin{(t)}\
    cos{(t)}-sin{(t)}end{pmatrix}$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Let
      $$X=e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}$$
      $$X_1=Re(X)=e^{-t}begin{pmatrix}2 cos{(t)}-sin{(t)}\
      cos{(t)}end{pmatrix}$$

      $$X_2=Im(X)= e^{-t}begin{pmatrix}2 sin{(t)}+cos{(t)}\
      sin{(t)}end{pmatrix}$$

      Then general real solution is
      $$X=c_1X_1+c_2X_2$$
      From initial condition we get
      $$c_1begin{pmatrix}2\
      1end{pmatrix}+c_2begin{pmatrix}1\
      0end{pmatrix}=begin{pmatrix}1\
      1end{pmatrix}$$

      $c_1=1$, $c_2=-1$.



      Answer:
      $$X=X_1-X_2=e^{-t}begin{pmatrix}cos{(t)}-3 sin{(t)}\
      cos{(t)}-sin{(t)}end{pmatrix}$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Let
        $$X=e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}$$
        $$X_1=Re(X)=e^{-t}begin{pmatrix}2 cos{(t)}-sin{(t)}\
        cos{(t)}end{pmatrix}$$

        $$X_2=Im(X)= e^{-t}begin{pmatrix}2 sin{(t)}+cos{(t)}\
        sin{(t)}end{pmatrix}$$

        Then general real solution is
        $$X=c_1X_1+c_2X_2$$
        From initial condition we get
        $$c_1begin{pmatrix}2\
        1end{pmatrix}+c_2begin{pmatrix}1\
        0end{pmatrix}=begin{pmatrix}1\
        1end{pmatrix}$$

        $c_1=1$, $c_2=-1$.



        Answer:
        $$X=X_1-X_2=e^{-t}begin{pmatrix}cos{(t)}-3 sin{(t)}\
        cos{(t)}-sin{(t)}end{pmatrix}$$






        share|cite|improve this answer









        $endgroup$



        Let
        $$X=e^{(-1+i)t}begin{pmatrix}2+i\1end{pmatrix}$$
        $$X_1=Re(X)=e^{-t}begin{pmatrix}2 cos{(t)}-sin{(t)}\
        cos{(t)}end{pmatrix}$$

        $$X_2=Im(X)= e^{-t}begin{pmatrix}2 sin{(t)}+cos{(t)}\
        sin{(t)}end{pmatrix}$$

        Then general real solution is
        $$X=c_1X_1+c_2X_2$$
        From initial condition we get
        $$c_1begin{pmatrix}2\
        1end{pmatrix}+c_2begin{pmatrix}1\
        0end{pmatrix}=begin{pmatrix}1\
        1end{pmatrix}$$

        $c_1=1$, $c_2=-1$.



        Answer:
        $$X=X_1-X_2=e^{-t}begin{pmatrix}cos{(t)}-3 sin{(t)}\
        cos{(t)}-sin{(t)}end{pmatrix}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 10 '18 at 13:41









        Aleksas DomarkasAleksas Domarkas

        1,0476




        1,0476























            2












            $begingroup$

            $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$. Hence by characteristic equation $lambda^2+2lambda+2=0$, $lambda=-1pm i$. This shows solutions $y=e^{-t}cos t$ and $y=e^{-t}sin t$.



            Now replacing $x=y'+3y$ gives $x=2e^{-t}cos t-e^{-t}sin t$ and $x=e^{-t}cos t+2e^{-t}sin t$.



            Therefore general solution is
            begin{cases}
            x=C_1(2e^{-t}cos t-e^{-t}sin t)+C_2(e^{-t}cos t+2e^{-t}sin t),\
            y=C_1e^{-t}cos t+C_2e^{-t}sin t.
            end{cases}

            with initial condition $C_1=1$ and $C_2=-1$, we have particular solution
            begin{cases}
            x=e^{-t}cos t-3e^{-t}sin t,\
            y=e^{-t}cos t-e^{-t}sin t.
            end{cases}

            the behaviour of solution is $|mathrm{x}|to0$, because
            begin{cases}
            |x|=|e^{-t}cos t-3e^{-t}sin t|leqsqrt{10}e^{-t}to0,\
            |y|=|e^{-t}cos t-e^{-t}sin t|leqsqrt{2}e^{-t}to0.
            end{cases}

            as $ttoinfty$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              ,Your answer to behaviour of solutions as $trightarrow 0$ contains inequalities. Those inequalities contains$sqrt{10}e^{-t}$ and $sqrt{2}e^{-t}$.My question is why did you select those terms?
              $endgroup$
              – Dhamnekar Winod
              Dec 10 '18 at 15:21


















            2












            $begingroup$

            $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$. Hence by characteristic equation $lambda^2+2lambda+2=0$, $lambda=-1pm i$. This shows solutions $y=e^{-t}cos t$ and $y=e^{-t}sin t$.



            Now replacing $x=y'+3y$ gives $x=2e^{-t}cos t-e^{-t}sin t$ and $x=e^{-t}cos t+2e^{-t}sin t$.



            Therefore general solution is
            begin{cases}
            x=C_1(2e^{-t}cos t-e^{-t}sin t)+C_2(e^{-t}cos t+2e^{-t}sin t),\
            y=C_1e^{-t}cos t+C_2e^{-t}sin t.
            end{cases}

            with initial condition $C_1=1$ and $C_2=-1$, we have particular solution
            begin{cases}
            x=e^{-t}cos t-3e^{-t}sin t,\
            y=e^{-t}cos t-e^{-t}sin t.
            end{cases}

            the behaviour of solution is $|mathrm{x}|to0$, because
            begin{cases}
            |x|=|e^{-t}cos t-3e^{-t}sin t|leqsqrt{10}e^{-t}to0,\
            |y|=|e^{-t}cos t-e^{-t}sin t|leqsqrt{2}e^{-t}to0.
            end{cases}

            as $ttoinfty$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              ,Your answer to behaviour of solutions as $trightarrow 0$ contains inequalities. Those inequalities contains$sqrt{10}e^{-t}$ and $sqrt{2}e^{-t}$.My question is why did you select those terms?
              $endgroup$
              – Dhamnekar Winod
              Dec 10 '18 at 15:21
















            2












            2








            2





            $begingroup$

            $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$. Hence by characteristic equation $lambda^2+2lambda+2=0$, $lambda=-1pm i$. This shows solutions $y=e^{-t}cos t$ and $y=e^{-t}sin t$.



            Now replacing $x=y'+3y$ gives $x=2e^{-t}cos t-e^{-t}sin t$ and $x=e^{-t}cos t+2e^{-t}sin t$.



            Therefore general solution is
            begin{cases}
            x=C_1(2e^{-t}cos t-e^{-t}sin t)+C_2(e^{-t}cos t+2e^{-t}sin t),\
            y=C_1e^{-t}cos t+C_2e^{-t}sin t.
            end{cases}

            with initial condition $C_1=1$ and $C_2=-1$, we have particular solution
            begin{cases}
            x=e^{-t}cos t-3e^{-t}sin t,\
            y=e^{-t}cos t-e^{-t}sin t.
            end{cases}

            the behaviour of solution is $|mathrm{x}|to0$, because
            begin{cases}
            |x|=|e^{-t}cos t-3e^{-t}sin t|leqsqrt{10}e^{-t}to0,\
            |y|=|e^{-t}cos t-e^{-t}sin t|leqsqrt{2}e^{-t}to0.
            end{cases}

            as $ttoinfty$.






            share|cite|improve this answer









            $endgroup$



            $x'=x-5y$ and $y'=x-3y$ then $y''+2y'+2y=0$. Hence by characteristic equation $lambda^2+2lambda+2=0$, $lambda=-1pm i$. This shows solutions $y=e^{-t}cos t$ and $y=e^{-t}sin t$.



            Now replacing $x=y'+3y$ gives $x=2e^{-t}cos t-e^{-t}sin t$ and $x=e^{-t}cos t+2e^{-t}sin t$.



            Therefore general solution is
            begin{cases}
            x=C_1(2e^{-t}cos t-e^{-t}sin t)+C_2(e^{-t}cos t+2e^{-t}sin t),\
            y=C_1e^{-t}cos t+C_2e^{-t}sin t.
            end{cases}

            with initial condition $C_1=1$ and $C_2=-1$, we have particular solution
            begin{cases}
            x=e^{-t}cos t-3e^{-t}sin t,\
            y=e^{-t}cos t-e^{-t}sin t.
            end{cases}

            the behaviour of solution is $|mathrm{x}|to0$, because
            begin{cases}
            |x|=|e^{-t}cos t-3e^{-t}sin t|leqsqrt{10}e^{-t}to0,\
            |y|=|e^{-t}cos t-e^{-t}sin t|leqsqrt{2}e^{-t}to0.
            end{cases}

            as $ttoinfty$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 10 '18 at 6:13









            NosratiNosrati

            26.5k62354




            26.5k62354












            • $begingroup$
              ,Your answer to behaviour of solutions as $trightarrow 0$ contains inequalities. Those inequalities contains$sqrt{10}e^{-t}$ and $sqrt{2}e^{-t}$.My question is why did you select those terms?
              $endgroup$
              – Dhamnekar Winod
              Dec 10 '18 at 15:21




















            • $begingroup$
              ,Your answer to behaviour of solutions as $trightarrow 0$ contains inequalities. Those inequalities contains$sqrt{10}e^{-t}$ and $sqrt{2}e^{-t}$.My question is why did you select those terms?
              $endgroup$
              – Dhamnekar Winod
              Dec 10 '18 at 15:21


















            $begingroup$
            ,Your answer to behaviour of solutions as $trightarrow 0$ contains inequalities. Those inequalities contains$sqrt{10}e^{-t}$ and $sqrt{2}e^{-t}$.My question is why did you select those terms?
            $endgroup$
            – Dhamnekar Winod
            Dec 10 '18 at 15:21






            $begingroup$
            ,Your answer to behaviour of solutions as $trightarrow 0$ contains inequalities. Those inequalities contains$sqrt{10}e^{-t}$ and $sqrt{2}e^{-t}$.My question is why did you select those terms?
            $endgroup$
            – Dhamnekar Winod
            Dec 10 '18 at 15:21




















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033452%2fsystems-of-differential-equations%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen