How to solve for dx in the numerator by itself
$begingroup$
$$int frac{dx}{1+x^2} $$
I'm having a hard time knowing what to do when it's just dx on top
indefinite-integrals
$endgroup$
add a comment |
$begingroup$
$$int frac{dx}{1+x^2} $$
I'm having a hard time knowing what to do when it's just dx on top
indefinite-integrals
$endgroup$
add a comment |
$begingroup$
$$int frac{dx}{1+x^2} $$
I'm having a hard time knowing what to do when it's just dx on top
indefinite-integrals
$endgroup$
$$int frac{dx}{1+x^2} $$
I'm having a hard time knowing what to do when it's just dx on top
indefinite-integrals
indefinite-integrals
edited Dec 10 '18 at 5:17
Patrick Stevens
28.6k52874
28.6k52874
asked Dec 10 '18 at 5:14
A.BreeA.Bree
1
1
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If this was your confusion: the integral is precisely by definition equal to $$int frac{1}{1+x^2} mathrm{d}x$$
which is a very well-known integral.
$endgroup$
add a comment |
$begingroup$
$$int frac{1}{1+x^2} space dx = tan^{-1}(x) + C$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033479%2fhow-to-solve-for-dx-in-the-numerator-by-itself%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If this was your confusion: the integral is precisely by definition equal to $$int frac{1}{1+x^2} mathrm{d}x$$
which is a very well-known integral.
$endgroup$
add a comment |
$begingroup$
If this was your confusion: the integral is precisely by definition equal to $$int frac{1}{1+x^2} mathrm{d}x$$
which is a very well-known integral.
$endgroup$
add a comment |
$begingroup$
If this was your confusion: the integral is precisely by definition equal to $$int frac{1}{1+x^2} mathrm{d}x$$
which is a very well-known integral.
$endgroup$
If this was your confusion: the integral is precisely by definition equal to $$int frac{1}{1+x^2} mathrm{d}x$$
which is a very well-known integral.
answered Dec 10 '18 at 5:18
Patrick StevensPatrick Stevens
28.6k52874
28.6k52874
add a comment |
add a comment |
$begingroup$
$$int frac{1}{1+x^2} space dx = tan^{-1}(x) + C$$
$endgroup$
add a comment |
$begingroup$
$$int frac{1}{1+x^2} space dx = tan^{-1}(x) + C$$
$endgroup$
add a comment |
$begingroup$
$$int frac{1}{1+x^2} space dx = tan^{-1}(x) + C$$
$endgroup$
$$int frac{1}{1+x^2} space dx = tan^{-1}(x) + C$$
answered Dec 10 '18 at 5:26
ArtArt
31217
31217
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033479%2fhow-to-solve-for-dx-in-the-numerator-by-itself%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown