$int_0^infty e^{-x}x^{n-1}dx$ is convergent for $n>0$
$begingroup$
I have something to ask regarding convergence of gamma function. I have done the proof as below. Please tell me if it is correct.
$int_0^infty e^{-x}x^{n-1}dx$ is convergent for $n>0$
Proof: For $nin(0,1],~int_0^infty e^{-x}x^{n-1}dx$ is convergent since $int_0^infty e^{-x}x^{n-1}dx=int_0^1 e^{-x}x^{n-1}dx+int_1^infty e^{-x}x^{n-1}dxleint_0^1 x^{n-1}dx+int_1^infty e^{-x}dx.$
On the other hand, $int e^{-x}x^{(n+1)-1}dx=-x^n.e^{-x}+nint e^{-x}x^{n-1}dxcdots(1)$
Since, $limlimits_{xtoinfty}x^n.e^{-x}=0,$ by successive application of $(1)$ $n$ can be put in $(0,1],$ whence the result follows.
improper-integrals
$endgroup$
add a comment |
$begingroup$
I have something to ask regarding convergence of gamma function. I have done the proof as below. Please tell me if it is correct.
$int_0^infty e^{-x}x^{n-1}dx$ is convergent for $n>0$
Proof: For $nin(0,1],~int_0^infty e^{-x}x^{n-1}dx$ is convergent since $int_0^infty e^{-x}x^{n-1}dx=int_0^1 e^{-x}x^{n-1}dx+int_1^infty e^{-x}x^{n-1}dxleint_0^1 x^{n-1}dx+int_1^infty e^{-x}dx.$
On the other hand, $int e^{-x}x^{(n+1)-1}dx=-x^n.e^{-x}+nint e^{-x}x^{n-1}dxcdots(1)$
Since, $limlimits_{xtoinfty}x^n.e^{-x}=0,$ by successive application of $(1)$ $n$ can be put in $(0,1],$ whence the result follows.
improper-integrals
$endgroup$
$begingroup$
The proof is flawed. For $x>1$, $x^{n-1} not le 1$ when $n>1$
$endgroup$
– Mark Viola
Dec 14 '18 at 2:30
$begingroup$
Instead of integrating by parts, you can pick $a(n) in (0,1),c(n)$ such that $x^{n-1} < c(n) e^{a(n) x}$ for $x > 1$
$endgroup$
– reuns
Dec 14 '18 at 3:28
add a comment |
$begingroup$
I have something to ask regarding convergence of gamma function. I have done the proof as below. Please tell me if it is correct.
$int_0^infty e^{-x}x^{n-1}dx$ is convergent for $n>0$
Proof: For $nin(0,1],~int_0^infty e^{-x}x^{n-1}dx$ is convergent since $int_0^infty e^{-x}x^{n-1}dx=int_0^1 e^{-x}x^{n-1}dx+int_1^infty e^{-x}x^{n-1}dxleint_0^1 x^{n-1}dx+int_1^infty e^{-x}dx.$
On the other hand, $int e^{-x}x^{(n+1)-1}dx=-x^n.e^{-x}+nint e^{-x}x^{n-1}dxcdots(1)$
Since, $limlimits_{xtoinfty}x^n.e^{-x}=0,$ by successive application of $(1)$ $n$ can be put in $(0,1],$ whence the result follows.
improper-integrals
$endgroup$
I have something to ask regarding convergence of gamma function. I have done the proof as below. Please tell me if it is correct.
$int_0^infty e^{-x}x^{n-1}dx$ is convergent for $n>0$
Proof: For $nin(0,1],~int_0^infty e^{-x}x^{n-1}dx$ is convergent since $int_0^infty e^{-x}x^{n-1}dx=int_0^1 e^{-x}x^{n-1}dx+int_1^infty e^{-x}x^{n-1}dxleint_0^1 x^{n-1}dx+int_1^infty e^{-x}dx.$
On the other hand, $int e^{-x}x^{(n+1)-1}dx=-x^n.e^{-x}+nint e^{-x}x^{n-1}dxcdots(1)$
Since, $limlimits_{xtoinfty}x^n.e^{-x}=0,$ by successive application of $(1)$ $n$ can be put in $(0,1],$ whence the result follows.
improper-integrals
improper-integrals
edited Dec 14 '18 at 2:31
TonyK
42.6k355134
42.6k355134
asked Dec 14 '18 at 2:24
JaveJave
472114
472114
$begingroup$
The proof is flawed. For $x>1$, $x^{n-1} not le 1$ when $n>1$
$endgroup$
– Mark Viola
Dec 14 '18 at 2:30
$begingroup$
Instead of integrating by parts, you can pick $a(n) in (0,1),c(n)$ such that $x^{n-1} < c(n) e^{a(n) x}$ for $x > 1$
$endgroup$
– reuns
Dec 14 '18 at 3:28
add a comment |
$begingroup$
The proof is flawed. For $x>1$, $x^{n-1} not le 1$ when $n>1$
$endgroup$
– Mark Viola
Dec 14 '18 at 2:30
$begingroup$
Instead of integrating by parts, you can pick $a(n) in (0,1),c(n)$ such that $x^{n-1} < c(n) e^{a(n) x}$ for $x > 1$
$endgroup$
– reuns
Dec 14 '18 at 3:28
$begingroup$
The proof is flawed. For $x>1$, $x^{n-1} not le 1$ when $n>1$
$endgroup$
– Mark Viola
Dec 14 '18 at 2:30
$begingroup$
The proof is flawed. For $x>1$, $x^{n-1} not le 1$ when $n>1$
$endgroup$
– Mark Viola
Dec 14 '18 at 2:30
$begingroup$
Instead of integrating by parts, you can pick $a(n) in (0,1),c(n)$ such that $x^{n-1} < c(n) e^{a(n) x}$ for $x > 1$
$endgroup$
– reuns
Dec 14 '18 at 3:28
$begingroup$
Instead of integrating by parts, you can pick $a(n) in (0,1),c(n)$ such that $x^{n-1} < c(n) e^{a(n) x}$ for $x > 1$
$endgroup$
– reuns
Dec 14 '18 at 3:28
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The proof in the OP fails when $n>1$ since for $x>1$, $x^{n-1}>1$ or $n>1$.
But we can assert that $e^xge frac{x^{lfloor nrfloor+1}}{(lfloor nrfloor +1)!}$ for $x ge 1$. So, for $Lge1$
$$begin{align}
left|int_1^L e^{-x}x^{n-1},dxright|&le left(lfloor nrfloor+1right) ! int_1^L x^{n-lfloor nrfloor -2},dx\\
&=frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
end{align}$$
Since $n-lfloor nrfloor -1<0$, $lim_{Ltoinfty}left(frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
right)=frac{left(lfloor nrfloor+1right) !}{1-left(n-lfloor nrfloorright) }$, and the integral on the left-hand side of $(1)$ converges. And we are done!
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038843%2fint-0-infty-e-xxn-1dx-is-convergent-for-n0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The proof in the OP fails when $n>1$ since for $x>1$, $x^{n-1}>1$ or $n>1$.
But we can assert that $e^xge frac{x^{lfloor nrfloor+1}}{(lfloor nrfloor +1)!}$ for $x ge 1$. So, for $Lge1$
$$begin{align}
left|int_1^L e^{-x}x^{n-1},dxright|&le left(lfloor nrfloor+1right) ! int_1^L x^{n-lfloor nrfloor -2},dx\\
&=frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
end{align}$$
Since $n-lfloor nrfloor -1<0$, $lim_{Ltoinfty}left(frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
right)=frac{left(lfloor nrfloor+1right) !}{1-left(n-lfloor nrfloorright) }$, and the integral on the left-hand side of $(1)$ converges. And we are done!
$endgroup$
add a comment |
$begingroup$
The proof in the OP fails when $n>1$ since for $x>1$, $x^{n-1}>1$ or $n>1$.
But we can assert that $e^xge frac{x^{lfloor nrfloor+1}}{(lfloor nrfloor +1)!}$ for $x ge 1$. So, for $Lge1$
$$begin{align}
left|int_1^L e^{-x}x^{n-1},dxright|&le left(lfloor nrfloor+1right) ! int_1^L x^{n-lfloor nrfloor -2},dx\\
&=frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
end{align}$$
Since $n-lfloor nrfloor -1<0$, $lim_{Ltoinfty}left(frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
right)=frac{left(lfloor nrfloor+1right) !}{1-left(n-lfloor nrfloorright) }$, and the integral on the left-hand side of $(1)$ converges. And we are done!
$endgroup$
add a comment |
$begingroup$
The proof in the OP fails when $n>1$ since for $x>1$, $x^{n-1}>1$ or $n>1$.
But we can assert that $e^xge frac{x^{lfloor nrfloor+1}}{(lfloor nrfloor +1)!}$ for $x ge 1$. So, for $Lge1$
$$begin{align}
left|int_1^L e^{-x}x^{n-1},dxright|&le left(lfloor nrfloor+1right) ! int_1^L x^{n-lfloor nrfloor -2},dx\\
&=frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
end{align}$$
Since $n-lfloor nrfloor -1<0$, $lim_{Ltoinfty}left(frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
right)=frac{left(lfloor nrfloor+1right) !}{1-left(n-lfloor nrfloorright) }$, and the integral on the left-hand side of $(1)$ converges. And we are done!
$endgroup$
The proof in the OP fails when $n>1$ since for $x>1$, $x^{n-1}>1$ or $n>1$.
But we can assert that $e^xge frac{x^{lfloor nrfloor+1}}{(lfloor nrfloor +1)!}$ for $x ge 1$. So, for $Lge1$
$$begin{align}
left|int_1^L e^{-x}x^{n-1},dxright|&le left(lfloor nrfloor+1right) ! int_1^L x^{n-lfloor nrfloor -2},dx\\
&=frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
end{align}$$
Since $n-lfloor nrfloor -1<0$, $lim_{Ltoinfty}left(frac{left(lfloor nrfloor+1right) !}{left(n-lfloor nrfloor-1right) }left(L^{left(n-lfloor nrfloor-1right) }-1right)
right)=frac{left(lfloor nrfloor+1right) !}{1-left(n-lfloor nrfloorright) }$, and the integral on the left-hand side of $(1)$ converges. And we are done!
edited Dec 14 '18 at 3:51
answered Dec 14 '18 at 3:45
Mark ViolaMark Viola
132k1275173
132k1275173
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038843%2fint-0-infty-e-xxn-1dx-is-convergent-for-n0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The proof is flawed. For $x>1$, $x^{n-1} not le 1$ when $n>1$
$endgroup$
– Mark Viola
Dec 14 '18 at 2:30
$begingroup$
Instead of integrating by parts, you can pick $a(n) in (0,1),c(n)$ such that $x^{n-1} < c(n) e^{a(n) x}$ for $x > 1$
$endgroup$
– reuns
Dec 14 '18 at 3:28