Proving $1-cos2a+2sin a sin3a = 2 sin^22a$ and $sin^22a - sin^2a = sin3asin a$
Thanks for viewing this post. I got an assignment but have a hard time solving a few questions.
1) Prove: $$1 - cos2a + 2 sin a, sin3a = 2 sin^22a$$
I started off with rewriting $1 - cos2a$ to $2 sin^2a$. That gets me to:
$$2 sin^2a + 2sin a, sin3a = 2 sin^22a$$
but I am lost after this point.
2) Prove: $$sin^22a - sin^2a = sin3a ,sin a$$
I have begun with replacing $sin^22a$ with $4 sin^2a ,cos^2a$.
That brings me to:
$$4 sin^2a,cos^2a - sin^2a = sin3a, sin a$$
or
$$sin^2a(4 cos^2a -1) = sin3asin a$$
but I cannot find the solution.
So, can anyone give me hints on how to prove these 2 tasks, and also correct me if I started the exercise the wrong way?
Thanks for your attention. I’m looking forward to your reply.
trigonometry
add a comment |
Thanks for viewing this post. I got an assignment but have a hard time solving a few questions.
1) Prove: $$1 - cos2a + 2 sin a, sin3a = 2 sin^22a$$
I started off with rewriting $1 - cos2a$ to $2 sin^2a$. That gets me to:
$$2 sin^2a + 2sin a, sin3a = 2 sin^22a$$
but I am lost after this point.
2) Prove: $$sin^22a - sin^2a = sin3a ,sin a$$
I have begun with replacing $sin^22a$ with $4 sin^2a ,cos^2a$.
That brings me to:
$$4 sin^2a,cos^2a - sin^2a = sin3a, sin a$$
or
$$sin^2a(4 cos^2a -1) = sin3asin a$$
but I cannot find the solution.
So, can anyone give me hints on how to prove these 2 tasks, and also correct me if I started the exercise the wrong way?
Thanks for your attention. I’m looking forward to your reply.
trigonometry
add a comment |
Thanks for viewing this post. I got an assignment but have a hard time solving a few questions.
1) Prove: $$1 - cos2a + 2 sin a, sin3a = 2 sin^22a$$
I started off with rewriting $1 - cos2a$ to $2 sin^2a$. That gets me to:
$$2 sin^2a + 2sin a, sin3a = 2 sin^22a$$
but I am lost after this point.
2) Prove: $$sin^22a - sin^2a = sin3a ,sin a$$
I have begun with replacing $sin^22a$ with $4 sin^2a ,cos^2a$.
That brings me to:
$$4 sin^2a,cos^2a - sin^2a = sin3a, sin a$$
or
$$sin^2a(4 cos^2a -1) = sin3asin a$$
but I cannot find the solution.
So, can anyone give me hints on how to prove these 2 tasks, and also correct me if I started the exercise the wrong way?
Thanks for your attention. I’m looking forward to your reply.
trigonometry
Thanks for viewing this post. I got an assignment but have a hard time solving a few questions.
1) Prove: $$1 - cos2a + 2 sin a, sin3a = 2 sin^22a$$
I started off with rewriting $1 - cos2a$ to $2 sin^2a$. That gets me to:
$$2 sin^2a + 2sin a, sin3a = 2 sin^22a$$
but I am lost after this point.
2) Prove: $$sin^22a - sin^2a = sin3a ,sin a$$
I have begun with replacing $sin^22a$ with $4 sin^2a ,cos^2a$.
That brings me to:
$$4 sin^2a,cos^2a - sin^2a = sin3a, sin a$$
or
$$sin^2a(4 cos^2a -1) = sin3asin a$$
but I cannot find the solution.
So, can anyone give me hints on how to prove these 2 tasks, and also correct me if I started the exercise the wrong way?
Thanks for your attention. I’m looking forward to your reply.
trigonometry
trigonometry
edited Nov 28 at 22:38
Blue
47.5k870150
47.5k870150
asked Nov 28 at 21:33
Toa Narumi
91
91
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
Hint:
Linearise the r.h.s.:
$$2sin^22a=1-cos 4a,$$
and, in the l.h.s., $;2sin asin 3a$.
add a comment |
- Hint:
Consider the trigonometric identities $$sin^2alpha+cos^2alpha=1$$
$$sin(2alpha)=2sinalpha cosalphaquad cos(2alpha)=cos^2alpha-sin^2alpha$$
$$sin(3alpha)=3sinalpha-4sin^3alpha$$
SOLUTION
$$sin^2alpha(1-sin^2alpha)=sin^2alphacos^2alpha$$ $$= sinalpha(sinalpha-sin^3alpha)quad mid·4$$ $$Rightarrow sinalpha(sinalpha+3sinalpha-4sin^3alpha)=4sin^2alpha ·cos^2alpha$$ $$sinalpha(sinalpha+sin(3alpha))=sin^2alpha+sinalpha sin(3alpha)=4sin^2alpha ·cos^2alpha=sin^2(2alpha)$$ $$Rightarrow 2sin^2alpha+2sinalphasin(3alpha)=bigl(1-cos^2alpha+sin^2alphabigr)+2sinalphasin(3alpha)=2sin^2alpha$$ Hence $$1-cos(2alpha)+2sinalphasin(3alpha)=2sin^2alpha$$
- SOLUTION
$$sinalpha(3-4sin^2alpha)=sin(3alpha)$$ Thus $$sinalpha(4-4sin^2alpha-1)=sinalpha(4cos^2alpha-1)=4sinalphacos^2alpha-sinalpha=sin(3alpha)$$ $$Rightarrow4sin^2alphacos^2alpha-sin^2alpha=sin^2(2alpha)-sin^2alpha=sin(3alpha)sin(alpha)$$
add a comment |
Using http://mathworld.wolfram.com/WernerFormulas.html,
$$2sin asin3a=cos(3-1)a-cos(3+1)a$$
Then use $cos2y=1-2sin^2y$
For the second, use Prove $ sin(A+B)sin(A-B)=sin^2A-sin^2B $
See also: Prove that $cos (A + B)cos (A - B) = {cos ^2}A - {sin ^2}B$
add a comment |
HINT
For the first one use that
$$2sin theta sin varphi = {{cos(theta - varphi) - cos(theta + varphi)} }$$
then
$$1 - cos (2a) + 2 sin a, sin (3a) = 2 sin^2 (2a=$$
$$1 - cos (2a) + cos(-2a)-cos (4a) = 2 sin^2 (2a)$$
$$1 - color{red}{cos (2a) + cos(2a)}-cos (4a) = 2 sin^2 (2a)$$
and recall that $cos (2x)=1-2sin^2 x$.
Can you proceed also for the second one, using the same identities?
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017750%2fproving-1-cos2a2-sin-a-sin3a-2-sin22a-and-sin22a-sin2a-sin3a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint:
Linearise the r.h.s.:
$$2sin^22a=1-cos 4a,$$
and, in the l.h.s., $;2sin asin 3a$.
add a comment |
Hint:
Linearise the r.h.s.:
$$2sin^22a=1-cos 4a,$$
and, in the l.h.s., $;2sin asin 3a$.
add a comment |
Hint:
Linearise the r.h.s.:
$$2sin^22a=1-cos 4a,$$
and, in the l.h.s., $;2sin asin 3a$.
Hint:
Linearise the r.h.s.:
$$2sin^22a=1-cos 4a,$$
and, in the l.h.s., $;2sin asin 3a$.
answered Nov 28 at 21:47
Bernard
117k638111
117k638111
add a comment |
add a comment |
- Hint:
Consider the trigonometric identities $$sin^2alpha+cos^2alpha=1$$
$$sin(2alpha)=2sinalpha cosalphaquad cos(2alpha)=cos^2alpha-sin^2alpha$$
$$sin(3alpha)=3sinalpha-4sin^3alpha$$
SOLUTION
$$sin^2alpha(1-sin^2alpha)=sin^2alphacos^2alpha$$ $$= sinalpha(sinalpha-sin^3alpha)quad mid·4$$ $$Rightarrow sinalpha(sinalpha+3sinalpha-4sin^3alpha)=4sin^2alpha ·cos^2alpha$$ $$sinalpha(sinalpha+sin(3alpha))=sin^2alpha+sinalpha sin(3alpha)=4sin^2alpha ·cos^2alpha=sin^2(2alpha)$$ $$Rightarrow 2sin^2alpha+2sinalphasin(3alpha)=bigl(1-cos^2alpha+sin^2alphabigr)+2sinalphasin(3alpha)=2sin^2alpha$$ Hence $$1-cos(2alpha)+2sinalphasin(3alpha)=2sin^2alpha$$
- SOLUTION
$$sinalpha(3-4sin^2alpha)=sin(3alpha)$$ Thus $$sinalpha(4-4sin^2alpha-1)=sinalpha(4cos^2alpha-1)=4sinalphacos^2alpha-sinalpha=sin(3alpha)$$ $$Rightarrow4sin^2alphacos^2alpha-sin^2alpha=sin^2(2alpha)-sin^2alpha=sin(3alpha)sin(alpha)$$
add a comment |
- Hint:
Consider the trigonometric identities $$sin^2alpha+cos^2alpha=1$$
$$sin(2alpha)=2sinalpha cosalphaquad cos(2alpha)=cos^2alpha-sin^2alpha$$
$$sin(3alpha)=3sinalpha-4sin^3alpha$$
SOLUTION
$$sin^2alpha(1-sin^2alpha)=sin^2alphacos^2alpha$$ $$= sinalpha(sinalpha-sin^3alpha)quad mid·4$$ $$Rightarrow sinalpha(sinalpha+3sinalpha-4sin^3alpha)=4sin^2alpha ·cos^2alpha$$ $$sinalpha(sinalpha+sin(3alpha))=sin^2alpha+sinalpha sin(3alpha)=4sin^2alpha ·cos^2alpha=sin^2(2alpha)$$ $$Rightarrow 2sin^2alpha+2sinalphasin(3alpha)=bigl(1-cos^2alpha+sin^2alphabigr)+2sinalphasin(3alpha)=2sin^2alpha$$ Hence $$1-cos(2alpha)+2sinalphasin(3alpha)=2sin^2alpha$$
- SOLUTION
$$sinalpha(3-4sin^2alpha)=sin(3alpha)$$ Thus $$sinalpha(4-4sin^2alpha-1)=sinalpha(4cos^2alpha-1)=4sinalphacos^2alpha-sinalpha=sin(3alpha)$$ $$Rightarrow4sin^2alphacos^2alpha-sin^2alpha=sin^2(2alpha)-sin^2alpha=sin(3alpha)sin(alpha)$$
add a comment |
- Hint:
Consider the trigonometric identities $$sin^2alpha+cos^2alpha=1$$
$$sin(2alpha)=2sinalpha cosalphaquad cos(2alpha)=cos^2alpha-sin^2alpha$$
$$sin(3alpha)=3sinalpha-4sin^3alpha$$
SOLUTION
$$sin^2alpha(1-sin^2alpha)=sin^2alphacos^2alpha$$ $$= sinalpha(sinalpha-sin^3alpha)quad mid·4$$ $$Rightarrow sinalpha(sinalpha+3sinalpha-4sin^3alpha)=4sin^2alpha ·cos^2alpha$$ $$sinalpha(sinalpha+sin(3alpha))=sin^2alpha+sinalpha sin(3alpha)=4sin^2alpha ·cos^2alpha=sin^2(2alpha)$$ $$Rightarrow 2sin^2alpha+2sinalphasin(3alpha)=bigl(1-cos^2alpha+sin^2alphabigr)+2sinalphasin(3alpha)=2sin^2alpha$$ Hence $$1-cos(2alpha)+2sinalphasin(3alpha)=2sin^2alpha$$
- SOLUTION
$$sinalpha(3-4sin^2alpha)=sin(3alpha)$$ Thus $$sinalpha(4-4sin^2alpha-1)=sinalpha(4cos^2alpha-1)=4sinalphacos^2alpha-sinalpha=sin(3alpha)$$ $$Rightarrow4sin^2alphacos^2alpha-sin^2alpha=sin^2(2alpha)-sin^2alpha=sin(3alpha)sin(alpha)$$
- Hint:
Consider the trigonometric identities $$sin^2alpha+cos^2alpha=1$$
$$sin(2alpha)=2sinalpha cosalphaquad cos(2alpha)=cos^2alpha-sin^2alpha$$
$$sin(3alpha)=3sinalpha-4sin^3alpha$$
SOLUTION
$$sin^2alpha(1-sin^2alpha)=sin^2alphacos^2alpha$$ $$= sinalpha(sinalpha-sin^3alpha)quad mid·4$$ $$Rightarrow sinalpha(sinalpha+3sinalpha-4sin^3alpha)=4sin^2alpha ·cos^2alpha$$ $$sinalpha(sinalpha+sin(3alpha))=sin^2alpha+sinalpha sin(3alpha)=4sin^2alpha ·cos^2alpha=sin^2(2alpha)$$ $$Rightarrow 2sin^2alpha+2sinalphasin(3alpha)=bigl(1-cos^2alpha+sin^2alphabigr)+2sinalphasin(3alpha)=2sin^2alpha$$ Hence $$1-cos(2alpha)+2sinalphasin(3alpha)=2sin^2alpha$$
- SOLUTION
$$sinalpha(3-4sin^2alpha)=sin(3alpha)$$ Thus $$sinalpha(4-4sin^2alpha-1)=sinalpha(4cos^2alpha-1)=4sinalphacos^2alpha-sinalpha=sin(3alpha)$$ $$Rightarrow4sin^2alphacos^2alpha-sin^2alpha=sin^2(2alpha)-sin^2alpha=sin(3alpha)sin(alpha)$$
answered Nov 28 at 22:06
Dr. Mathva
929315
929315
add a comment |
add a comment |
Using http://mathworld.wolfram.com/WernerFormulas.html,
$$2sin asin3a=cos(3-1)a-cos(3+1)a$$
Then use $cos2y=1-2sin^2y$
For the second, use Prove $ sin(A+B)sin(A-B)=sin^2A-sin^2B $
See also: Prove that $cos (A + B)cos (A - B) = {cos ^2}A - {sin ^2}B$
add a comment |
Using http://mathworld.wolfram.com/WernerFormulas.html,
$$2sin asin3a=cos(3-1)a-cos(3+1)a$$
Then use $cos2y=1-2sin^2y$
For the second, use Prove $ sin(A+B)sin(A-B)=sin^2A-sin^2B $
See also: Prove that $cos (A + B)cos (A - B) = {cos ^2}A - {sin ^2}B$
add a comment |
Using http://mathworld.wolfram.com/WernerFormulas.html,
$$2sin asin3a=cos(3-1)a-cos(3+1)a$$
Then use $cos2y=1-2sin^2y$
For the second, use Prove $ sin(A+B)sin(A-B)=sin^2A-sin^2B $
See also: Prove that $cos (A + B)cos (A - B) = {cos ^2}A - {sin ^2}B$
Using http://mathworld.wolfram.com/WernerFormulas.html,
$$2sin asin3a=cos(3-1)a-cos(3+1)a$$
Then use $cos2y=1-2sin^2y$
For the second, use Prove $ sin(A+B)sin(A-B)=sin^2A-sin^2B $
See also: Prove that $cos (A + B)cos (A - B) = {cos ^2}A - {sin ^2}B$
answered Nov 29 at 4:58
lab bhattacharjee
222k15155273
222k15155273
add a comment |
add a comment |
HINT
For the first one use that
$$2sin theta sin varphi = {{cos(theta - varphi) - cos(theta + varphi)} }$$
then
$$1 - cos (2a) + 2 sin a, sin (3a) = 2 sin^2 (2a=$$
$$1 - cos (2a) + cos(-2a)-cos (4a) = 2 sin^2 (2a)$$
$$1 - color{red}{cos (2a) + cos(2a)}-cos (4a) = 2 sin^2 (2a)$$
and recall that $cos (2x)=1-2sin^2 x$.
Can you proceed also for the second one, using the same identities?
add a comment |
HINT
For the first one use that
$$2sin theta sin varphi = {{cos(theta - varphi) - cos(theta + varphi)} }$$
then
$$1 - cos (2a) + 2 sin a, sin (3a) = 2 sin^2 (2a=$$
$$1 - cos (2a) + cos(-2a)-cos (4a) = 2 sin^2 (2a)$$
$$1 - color{red}{cos (2a) + cos(2a)}-cos (4a) = 2 sin^2 (2a)$$
and recall that $cos (2x)=1-2sin^2 x$.
Can you proceed also for the second one, using the same identities?
add a comment |
HINT
For the first one use that
$$2sin theta sin varphi = {{cos(theta - varphi) - cos(theta + varphi)} }$$
then
$$1 - cos (2a) + 2 sin a, sin (3a) = 2 sin^2 (2a=$$
$$1 - cos (2a) + cos(-2a)-cos (4a) = 2 sin^2 (2a)$$
$$1 - color{red}{cos (2a) + cos(2a)}-cos (4a) = 2 sin^2 (2a)$$
and recall that $cos (2x)=1-2sin^2 x$.
Can you proceed also for the second one, using the same identities?
HINT
For the first one use that
$$2sin theta sin varphi = {{cos(theta - varphi) - cos(theta + varphi)} }$$
then
$$1 - cos (2a) + 2 sin a, sin (3a) = 2 sin^2 (2a=$$
$$1 - cos (2a) + cos(-2a)-cos (4a) = 2 sin^2 (2a)$$
$$1 - color{red}{cos (2a) + cos(2a)}-cos (4a) = 2 sin^2 (2a)$$
and recall that $cos (2x)=1-2sin^2 x$.
Can you proceed also for the second one, using the same identities?
edited Nov 28 at 21:59
answered Nov 28 at 21:41
gimusi
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017750%2fproving-1-cos2a2-sin-a-sin3a-2-sin22a-and-sin22a-sin2a-sin3a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown