Proving $1-cos2a+2sin a sin3a = 2 sin^22a$ and $sin^22a - sin^2a = sin3asin a$












-1














Thanks for viewing this post. I got an assignment but have a hard time solving a few questions.




1) Prove: $$1 - cos2a + 2 sin a, sin3a = 2 sin^22a$$




I started off with rewriting $1 - cos2a$ to $2 sin^2a$. That gets me to:
$$2 sin^2a + 2sin a, sin3a = 2 sin^22a$$
but I am lost after this point.




2) Prove: $$sin^22a - sin^2a = sin3a ,sin a$$




I have begun with replacing $sin^22a$ with $4 sin^2a ,cos^2a$.



That brings me to:
$$4 sin^2a,cos^2a - sin^2a = sin3a, sin a$$
or
$$sin^2a(4 cos^2a -1) = sin3asin a$$
but I cannot find the solution.




So, can anyone give me hints on how to prove these 2 tasks, and also correct me if I started the exercise the wrong way?




Thanks for your attention. I’m looking forward to your reply.










share|cite|improve this question





























    -1














    Thanks for viewing this post. I got an assignment but have a hard time solving a few questions.




    1) Prove: $$1 - cos2a + 2 sin a, sin3a = 2 sin^22a$$




    I started off with rewriting $1 - cos2a$ to $2 sin^2a$. That gets me to:
    $$2 sin^2a + 2sin a, sin3a = 2 sin^22a$$
    but I am lost after this point.




    2) Prove: $$sin^22a - sin^2a = sin3a ,sin a$$




    I have begun with replacing $sin^22a$ with $4 sin^2a ,cos^2a$.



    That brings me to:
    $$4 sin^2a,cos^2a - sin^2a = sin3a, sin a$$
    or
    $$sin^2a(4 cos^2a -1) = sin3asin a$$
    but I cannot find the solution.




    So, can anyone give me hints on how to prove these 2 tasks, and also correct me if I started the exercise the wrong way?




    Thanks for your attention. I’m looking forward to your reply.










    share|cite|improve this question



























      -1












      -1








      -1







      Thanks for viewing this post. I got an assignment but have a hard time solving a few questions.




      1) Prove: $$1 - cos2a + 2 sin a, sin3a = 2 sin^22a$$




      I started off with rewriting $1 - cos2a$ to $2 sin^2a$. That gets me to:
      $$2 sin^2a + 2sin a, sin3a = 2 sin^22a$$
      but I am lost after this point.




      2) Prove: $$sin^22a - sin^2a = sin3a ,sin a$$




      I have begun with replacing $sin^22a$ with $4 sin^2a ,cos^2a$.



      That brings me to:
      $$4 sin^2a,cos^2a - sin^2a = sin3a, sin a$$
      or
      $$sin^2a(4 cos^2a -1) = sin3asin a$$
      but I cannot find the solution.




      So, can anyone give me hints on how to prove these 2 tasks, and also correct me if I started the exercise the wrong way?




      Thanks for your attention. I’m looking forward to your reply.










      share|cite|improve this question















      Thanks for viewing this post. I got an assignment but have a hard time solving a few questions.




      1) Prove: $$1 - cos2a + 2 sin a, sin3a = 2 sin^22a$$




      I started off with rewriting $1 - cos2a$ to $2 sin^2a$. That gets me to:
      $$2 sin^2a + 2sin a, sin3a = 2 sin^22a$$
      but I am lost after this point.




      2) Prove: $$sin^22a - sin^2a = sin3a ,sin a$$




      I have begun with replacing $sin^22a$ with $4 sin^2a ,cos^2a$.



      That brings me to:
      $$4 sin^2a,cos^2a - sin^2a = sin3a, sin a$$
      or
      $$sin^2a(4 cos^2a -1) = sin3asin a$$
      but I cannot find the solution.




      So, can anyone give me hints on how to prove these 2 tasks, and also correct me if I started the exercise the wrong way?




      Thanks for your attention. I’m looking forward to your reply.







      trigonometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 28 at 22:38









      Blue

      47.5k870150




      47.5k870150










      asked Nov 28 at 21:33









      Toa Narumi

      91




      91






















          4 Answers
          4






          active

          oldest

          votes


















          0














          Hint:



          Linearise the r.h.s.:
          $$2sin^22a=1-cos 4a,$$



          and, in the l.h.s., $;2sin asin 3a$.






          share|cite|improve this answer





























            0















            1. Hint:


            Consider the trigonometric identities $$sin^2alpha+cos^2alpha=1$$
            $$sin(2alpha)=2sinalpha cosalphaquad cos(2alpha)=cos^2alpha-sin^2alpha$$
            $$sin(3alpha)=3sinalpha-4sin^3alpha$$



            SOLUTION




            $$sin^2alpha(1-sin^2alpha)=sin^2alphacos^2alpha$$ $$= sinalpha(sinalpha-sin^3alpha)quad mid·4$$ $$Rightarrow sinalpha(sinalpha+3sinalpha-4sin^3alpha)=4sin^2alpha ·cos^2alpha$$ $$sinalpha(sinalpha+sin(3alpha))=sin^2alpha+sinalpha sin(3alpha)=4sin^2alpha ·cos^2alpha=sin^2(2alpha)$$ $$Rightarrow 2sin^2alpha+2sinalphasin(3alpha)=bigl(1-cos^2alpha+sin^2alphabigr)+2sinalphasin(3alpha)=2sin^2alpha$$ Hence $$1-cos(2alpha)+2sinalphasin(3alpha)=2sin^2alpha$$





            1. SOLUTION


              $$sinalpha(3-4sin^2alpha)=sin(3alpha)$$ Thus $$sinalpha(4-4sin^2alpha-1)=sinalpha(4cos^2alpha-1)=4sinalphacos^2alpha-sinalpha=sin(3alpha)$$ $$Rightarrow4sin^2alphacos^2alpha-sin^2alpha=sin^2(2alpha)-sin^2alpha=sin(3alpha)sin(alpha)$$









            share|cite|improve this answer





























              0














              Using http://mathworld.wolfram.com/WernerFormulas.html,



              $$2sin asin3a=cos(3-1)a-cos(3+1)a$$
              Then use $cos2y=1-2sin^2y$



              For the second, use Prove $ sin(A+B)sin(A-B)=sin^2A-sin^2B $



              See also: Prove that $cos (A + B)cos (A - B) = {cos ^2}A - {sin ^2}B$






              share|cite|improve this answer





























                -1














                HINT



                For the first one use that



                $$2sin theta sin varphi = {{cos(theta - varphi) - cos(theta + varphi)} }$$



                then



                $$1 - cos (2a) + 2 sin a, sin (3a) = 2 sin^2 (2a=$$



                $$1 - cos (2a) + cos(-2a)-cos (4a) = 2 sin^2 (2a)$$
                $$1 - color{red}{cos (2a) + cos(2a)}-cos (4a) = 2 sin^2 (2a)$$



                and recall that $cos (2x)=1-2sin^2 x$.



                Can you proceed also for the second one, using the same identities?






                share|cite|improve this answer























                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017750%2fproving-1-cos2a2-sin-a-sin3a-2-sin22a-and-sin22a-sin2a-sin3a%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  0














                  Hint:



                  Linearise the r.h.s.:
                  $$2sin^22a=1-cos 4a,$$



                  and, in the l.h.s., $;2sin asin 3a$.






                  share|cite|improve this answer


























                    0














                    Hint:



                    Linearise the r.h.s.:
                    $$2sin^22a=1-cos 4a,$$



                    and, in the l.h.s., $;2sin asin 3a$.






                    share|cite|improve this answer
























                      0












                      0








                      0






                      Hint:



                      Linearise the r.h.s.:
                      $$2sin^22a=1-cos 4a,$$



                      and, in the l.h.s., $;2sin asin 3a$.






                      share|cite|improve this answer












                      Hint:



                      Linearise the r.h.s.:
                      $$2sin^22a=1-cos 4a,$$



                      and, in the l.h.s., $;2sin asin 3a$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Nov 28 at 21:47









                      Bernard

                      117k638111




                      117k638111























                          0















                          1. Hint:


                          Consider the trigonometric identities $$sin^2alpha+cos^2alpha=1$$
                          $$sin(2alpha)=2sinalpha cosalphaquad cos(2alpha)=cos^2alpha-sin^2alpha$$
                          $$sin(3alpha)=3sinalpha-4sin^3alpha$$



                          SOLUTION




                          $$sin^2alpha(1-sin^2alpha)=sin^2alphacos^2alpha$$ $$= sinalpha(sinalpha-sin^3alpha)quad mid·4$$ $$Rightarrow sinalpha(sinalpha+3sinalpha-4sin^3alpha)=4sin^2alpha ·cos^2alpha$$ $$sinalpha(sinalpha+sin(3alpha))=sin^2alpha+sinalpha sin(3alpha)=4sin^2alpha ·cos^2alpha=sin^2(2alpha)$$ $$Rightarrow 2sin^2alpha+2sinalphasin(3alpha)=bigl(1-cos^2alpha+sin^2alphabigr)+2sinalphasin(3alpha)=2sin^2alpha$$ Hence $$1-cos(2alpha)+2sinalphasin(3alpha)=2sin^2alpha$$





                          1. SOLUTION


                            $$sinalpha(3-4sin^2alpha)=sin(3alpha)$$ Thus $$sinalpha(4-4sin^2alpha-1)=sinalpha(4cos^2alpha-1)=4sinalphacos^2alpha-sinalpha=sin(3alpha)$$ $$Rightarrow4sin^2alphacos^2alpha-sin^2alpha=sin^2(2alpha)-sin^2alpha=sin(3alpha)sin(alpha)$$









                          share|cite|improve this answer


























                            0















                            1. Hint:


                            Consider the trigonometric identities $$sin^2alpha+cos^2alpha=1$$
                            $$sin(2alpha)=2sinalpha cosalphaquad cos(2alpha)=cos^2alpha-sin^2alpha$$
                            $$sin(3alpha)=3sinalpha-4sin^3alpha$$



                            SOLUTION




                            $$sin^2alpha(1-sin^2alpha)=sin^2alphacos^2alpha$$ $$= sinalpha(sinalpha-sin^3alpha)quad mid·4$$ $$Rightarrow sinalpha(sinalpha+3sinalpha-4sin^3alpha)=4sin^2alpha ·cos^2alpha$$ $$sinalpha(sinalpha+sin(3alpha))=sin^2alpha+sinalpha sin(3alpha)=4sin^2alpha ·cos^2alpha=sin^2(2alpha)$$ $$Rightarrow 2sin^2alpha+2sinalphasin(3alpha)=bigl(1-cos^2alpha+sin^2alphabigr)+2sinalphasin(3alpha)=2sin^2alpha$$ Hence $$1-cos(2alpha)+2sinalphasin(3alpha)=2sin^2alpha$$





                            1. SOLUTION


                              $$sinalpha(3-4sin^2alpha)=sin(3alpha)$$ Thus $$sinalpha(4-4sin^2alpha-1)=sinalpha(4cos^2alpha-1)=4sinalphacos^2alpha-sinalpha=sin(3alpha)$$ $$Rightarrow4sin^2alphacos^2alpha-sin^2alpha=sin^2(2alpha)-sin^2alpha=sin(3alpha)sin(alpha)$$









                            share|cite|improve this answer
























                              0












                              0








                              0







                              1. Hint:


                              Consider the trigonometric identities $$sin^2alpha+cos^2alpha=1$$
                              $$sin(2alpha)=2sinalpha cosalphaquad cos(2alpha)=cos^2alpha-sin^2alpha$$
                              $$sin(3alpha)=3sinalpha-4sin^3alpha$$



                              SOLUTION




                              $$sin^2alpha(1-sin^2alpha)=sin^2alphacos^2alpha$$ $$= sinalpha(sinalpha-sin^3alpha)quad mid·4$$ $$Rightarrow sinalpha(sinalpha+3sinalpha-4sin^3alpha)=4sin^2alpha ·cos^2alpha$$ $$sinalpha(sinalpha+sin(3alpha))=sin^2alpha+sinalpha sin(3alpha)=4sin^2alpha ·cos^2alpha=sin^2(2alpha)$$ $$Rightarrow 2sin^2alpha+2sinalphasin(3alpha)=bigl(1-cos^2alpha+sin^2alphabigr)+2sinalphasin(3alpha)=2sin^2alpha$$ Hence $$1-cos(2alpha)+2sinalphasin(3alpha)=2sin^2alpha$$





                              1. SOLUTION


                                $$sinalpha(3-4sin^2alpha)=sin(3alpha)$$ Thus $$sinalpha(4-4sin^2alpha-1)=sinalpha(4cos^2alpha-1)=4sinalphacos^2alpha-sinalpha=sin(3alpha)$$ $$Rightarrow4sin^2alphacos^2alpha-sin^2alpha=sin^2(2alpha)-sin^2alpha=sin(3alpha)sin(alpha)$$









                              share|cite|improve this answer













                              1. Hint:


                              Consider the trigonometric identities $$sin^2alpha+cos^2alpha=1$$
                              $$sin(2alpha)=2sinalpha cosalphaquad cos(2alpha)=cos^2alpha-sin^2alpha$$
                              $$sin(3alpha)=3sinalpha-4sin^3alpha$$



                              SOLUTION




                              $$sin^2alpha(1-sin^2alpha)=sin^2alphacos^2alpha$$ $$= sinalpha(sinalpha-sin^3alpha)quad mid·4$$ $$Rightarrow sinalpha(sinalpha+3sinalpha-4sin^3alpha)=4sin^2alpha ·cos^2alpha$$ $$sinalpha(sinalpha+sin(3alpha))=sin^2alpha+sinalpha sin(3alpha)=4sin^2alpha ·cos^2alpha=sin^2(2alpha)$$ $$Rightarrow 2sin^2alpha+2sinalphasin(3alpha)=bigl(1-cos^2alpha+sin^2alphabigr)+2sinalphasin(3alpha)=2sin^2alpha$$ Hence $$1-cos(2alpha)+2sinalphasin(3alpha)=2sin^2alpha$$





                              1. SOLUTION


                                $$sinalpha(3-4sin^2alpha)=sin(3alpha)$$ Thus $$sinalpha(4-4sin^2alpha-1)=sinalpha(4cos^2alpha-1)=4sinalphacos^2alpha-sinalpha=sin(3alpha)$$ $$Rightarrow4sin^2alphacos^2alpha-sin^2alpha=sin^2(2alpha)-sin^2alpha=sin(3alpha)sin(alpha)$$










                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Nov 28 at 22:06









                              Dr. Mathva

                              929315




                              929315























                                  0














                                  Using http://mathworld.wolfram.com/WernerFormulas.html,



                                  $$2sin asin3a=cos(3-1)a-cos(3+1)a$$
                                  Then use $cos2y=1-2sin^2y$



                                  For the second, use Prove $ sin(A+B)sin(A-B)=sin^2A-sin^2B $



                                  See also: Prove that $cos (A + B)cos (A - B) = {cos ^2}A - {sin ^2}B$






                                  share|cite|improve this answer


























                                    0














                                    Using http://mathworld.wolfram.com/WernerFormulas.html,



                                    $$2sin asin3a=cos(3-1)a-cos(3+1)a$$
                                    Then use $cos2y=1-2sin^2y$



                                    For the second, use Prove $ sin(A+B)sin(A-B)=sin^2A-sin^2B $



                                    See also: Prove that $cos (A + B)cos (A - B) = {cos ^2}A - {sin ^2}B$






                                    share|cite|improve this answer
























                                      0












                                      0








                                      0






                                      Using http://mathworld.wolfram.com/WernerFormulas.html,



                                      $$2sin asin3a=cos(3-1)a-cos(3+1)a$$
                                      Then use $cos2y=1-2sin^2y$



                                      For the second, use Prove $ sin(A+B)sin(A-B)=sin^2A-sin^2B $



                                      See also: Prove that $cos (A + B)cos (A - B) = {cos ^2}A - {sin ^2}B$






                                      share|cite|improve this answer












                                      Using http://mathworld.wolfram.com/WernerFormulas.html,



                                      $$2sin asin3a=cos(3-1)a-cos(3+1)a$$
                                      Then use $cos2y=1-2sin^2y$



                                      For the second, use Prove $ sin(A+B)sin(A-B)=sin^2A-sin^2B $



                                      See also: Prove that $cos (A + B)cos (A - B) = {cos ^2}A - {sin ^2}B$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Nov 29 at 4:58









                                      lab bhattacharjee

                                      222k15155273




                                      222k15155273























                                          -1














                                          HINT



                                          For the first one use that



                                          $$2sin theta sin varphi = {{cos(theta - varphi) - cos(theta + varphi)} }$$



                                          then



                                          $$1 - cos (2a) + 2 sin a, sin (3a) = 2 sin^2 (2a=$$



                                          $$1 - cos (2a) + cos(-2a)-cos (4a) = 2 sin^2 (2a)$$
                                          $$1 - color{red}{cos (2a) + cos(2a)}-cos (4a) = 2 sin^2 (2a)$$



                                          and recall that $cos (2x)=1-2sin^2 x$.



                                          Can you proceed also for the second one, using the same identities?






                                          share|cite|improve this answer




























                                            -1














                                            HINT



                                            For the first one use that



                                            $$2sin theta sin varphi = {{cos(theta - varphi) - cos(theta + varphi)} }$$



                                            then



                                            $$1 - cos (2a) + 2 sin a, sin (3a) = 2 sin^2 (2a=$$



                                            $$1 - cos (2a) + cos(-2a)-cos (4a) = 2 sin^2 (2a)$$
                                            $$1 - color{red}{cos (2a) + cos(2a)}-cos (4a) = 2 sin^2 (2a)$$



                                            and recall that $cos (2x)=1-2sin^2 x$.



                                            Can you proceed also for the second one, using the same identities?






                                            share|cite|improve this answer


























                                              -1












                                              -1








                                              -1






                                              HINT



                                              For the first one use that



                                              $$2sin theta sin varphi = {{cos(theta - varphi) - cos(theta + varphi)} }$$



                                              then



                                              $$1 - cos (2a) + 2 sin a, sin (3a) = 2 sin^2 (2a=$$



                                              $$1 - cos (2a) + cos(-2a)-cos (4a) = 2 sin^2 (2a)$$
                                              $$1 - color{red}{cos (2a) + cos(2a)}-cos (4a) = 2 sin^2 (2a)$$



                                              and recall that $cos (2x)=1-2sin^2 x$.



                                              Can you proceed also for the second one, using the same identities?






                                              share|cite|improve this answer














                                              HINT



                                              For the first one use that



                                              $$2sin theta sin varphi = {{cos(theta - varphi) - cos(theta + varphi)} }$$



                                              then



                                              $$1 - cos (2a) + 2 sin a, sin (3a) = 2 sin^2 (2a=$$



                                              $$1 - cos (2a) + cos(-2a)-cos (4a) = 2 sin^2 (2a)$$
                                              $$1 - color{red}{cos (2a) + cos(2a)}-cos (4a) = 2 sin^2 (2a)$$



                                              and recall that $cos (2x)=1-2sin^2 x$.



                                              Can you proceed also for the second one, using the same identities?







                                              share|cite|improve this answer














                                              share|cite|improve this answer



                                              share|cite|improve this answer








                                              edited Nov 28 at 21:59

























                                              answered Nov 28 at 21:41









                                              gimusi

                                              1




                                              1






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.





                                                  Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                                  Please pay close attention to the following guidance:


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017750%2fproving-1-cos2a2-sin-a-sin3a-2-sin22a-and-sin22a-sin2a-sin3a%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Wiesbaden

                                                  Marschland

                                                  Dieringhausen