When the series $sum_{n=2}^{+infty }(sqrt[n]{n}-1)^a$ is convergent depending on $ainBbb R$?
$begingroup$
When the series $sum_{n=2}^{+infty }(sqrt[n]{n}-1)^a$ is convergent depending on $ainBbb R$?
For $a=0 $ the series is divergent.
Else:
$sqrt[n]{n}-1=frac{e^{1/nln n}-1}{1/n ln n}cdot frac{1}{n}ln nsimfrac{ln n}{n}$
So, $sqrt[n]{n}-1$ is asymptotically similar to $frac{ln n}{n}$, and $(sqrt[n]{n}-1)^a$ will converge when $(frac{ln n}{n})^a$ converges. But I don't know how to finish it. Could you help me?
real-analysis sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
When the series $sum_{n=2}^{+infty }(sqrt[n]{n}-1)^a$ is convergent depending on $ainBbb R$?
For $a=0 $ the series is divergent.
Else:
$sqrt[n]{n}-1=frac{e^{1/nln n}-1}{1/n ln n}cdot frac{1}{n}ln nsimfrac{ln n}{n}$
So, $sqrt[n]{n}-1$ is asymptotically similar to $frac{ln n}{n}$, and $(sqrt[n]{n}-1)^a$ will converge when $(frac{ln n}{n})^a$ converges. But I don't know how to finish it. Could you help me?
real-analysis sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
When the series $sum_{n=2}^{+infty }(sqrt[n]{n}-1)^a$ is convergent depending on $ainBbb R$?
For $a=0 $ the series is divergent.
Else:
$sqrt[n]{n}-1=frac{e^{1/nln n}-1}{1/n ln n}cdot frac{1}{n}ln nsimfrac{ln n}{n}$
So, $sqrt[n]{n}-1$ is asymptotically similar to $frac{ln n}{n}$, and $(sqrt[n]{n}-1)^a$ will converge when $(frac{ln n}{n})^a$ converges. But I don't know how to finish it. Could you help me?
real-analysis sequences-and-series convergence
$endgroup$
When the series $sum_{n=2}^{+infty }(sqrt[n]{n}-1)^a$ is convergent depending on $ainBbb R$?
For $a=0 $ the series is divergent.
Else:
$sqrt[n]{n}-1=frac{e^{1/nln n}-1}{1/n ln n}cdot frac{1}{n}ln nsimfrac{ln n}{n}$
So, $sqrt[n]{n}-1$ is asymptotically similar to $frac{ln n}{n}$, and $(sqrt[n]{n}-1)^a$ will converge when $(frac{ln n}{n})^a$ converges. But I don't know how to finish it. Could you help me?
real-analysis sequences-and-series convergence
real-analysis sequences-and-series convergence
asked Dec 14 '18 at 2:27
matematicccmatematiccc
1275
1275
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For $a>1$, compare to $frac1{n^{1+(a-1)/2}}$:
$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n^{1+(a-1)/2}}\
=lim_{ntoinfty}frac{ln^an}{n^{a/2-1/2}}$$
Since $a>1$, $frac a2-frac12>0$, hence the limit equals $0$. The series converges.
For $ale 1$, compare to $frac1n$:$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n}\
=lim_{ntoinfty}frac{ln^an}{n^{a-1}}=infty$$
Even if $a<0$, the limit still diverges to infinity. Hence the series diverges.
$endgroup$
$begingroup$
$$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$$
$endgroup$
– Mark Viola
Dec 14 '18 at 4:01
$begingroup$
@MarkViola Could you please explain it more explicitly
$endgroup$
– Kemono Chen
Dec 14 '18 at 4:04
add a comment |
$begingroup$
In a comment, the OP asked "Could you please explain it more explicitly," which referenced the comment I left "$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$". To address the OP's request, we now proceed.
Using $e^x<frac1{1-x}$ for $x<1$ and $minleft(1-frac1nlog(n)right)=1-e^{-1} $ we have
$$begin{align}
sqrt[n]{n}-1 &=e^{frac1nlog(n)}-1\\
&le frac{frac1nlog(n)}{1-frac1nlog(n)}\\
&le frac{e}{e-1} frac{log(n)}{n}end{align}$$
$endgroup$
$begingroup$
I think you were going to use the formula to point out the mistake in my solution. Sorry for not expressing my thought correctly.
$endgroup$
– Kemono Chen
Dec 14 '18 at 5:54
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038848%2fwhen-the-series-sum-n-2-infty-sqrtnn-1a-is-convergent-depending%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $a>1$, compare to $frac1{n^{1+(a-1)/2}}$:
$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n^{1+(a-1)/2}}\
=lim_{ntoinfty}frac{ln^an}{n^{a/2-1/2}}$$
Since $a>1$, $frac a2-frac12>0$, hence the limit equals $0$. The series converges.
For $ale 1$, compare to $frac1n$:$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n}\
=lim_{ntoinfty}frac{ln^an}{n^{a-1}}=infty$$
Even if $a<0$, the limit still diverges to infinity. Hence the series diverges.
$endgroup$
$begingroup$
$$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$$
$endgroup$
– Mark Viola
Dec 14 '18 at 4:01
$begingroup$
@MarkViola Could you please explain it more explicitly
$endgroup$
– Kemono Chen
Dec 14 '18 at 4:04
add a comment |
$begingroup$
For $a>1$, compare to $frac1{n^{1+(a-1)/2}}$:
$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n^{1+(a-1)/2}}\
=lim_{ntoinfty}frac{ln^an}{n^{a/2-1/2}}$$
Since $a>1$, $frac a2-frac12>0$, hence the limit equals $0$. The series converges.
For $ale 1$, compare to $frac1n$:$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n}\
=lim_{ntoinfty}frac{ln^an}{n^{a-1}}=infty$$
Even if $a<0$, the limit still diverges to infinity. Hence the series diverges.
$endgroup$
$begingroup$
$$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$$
$endgroup$
– Mark Viola
Dec 14 '18 at 4:01
$begingroup$
@MarkViola Could you please explain it more explicitly
$endgroup$
– Kemono Chen
Dec 14 '18 at 4:04
add a comment |
$begingroup$
For $a>1$, compare to $frac1{n^{1+(a-1)/2}}$:
$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n^{1+(a-1)/2}}\
=lim_{ntoinfty}frac{ln^an}{n^{a/2-1/2}}$$
Since $a>1$, $frac a2-frac12>0$, hence the limit equals $0$. The series converges.
For $ale 1$, compare to $frac1n$:$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n}\
=lim_{ntoinfty}frac{ln^an}{n^{a-1}}=infty$$
Even if $a<0$, the limit still diverges to infinity. Hence the series diverges.
$endgroup$
For $a>1$, compare to $frac1{n^{1+(a-1)/2}}$:
$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n^{1+(a-1)/2}}\
=lim_{ntoinfty}frac{ln^an}{n^{a/2-1/2}}$$
Since $a>1$, $frac a2-frac12>0$, hence the limit equals $0$. The series converges.
For $ale 1$, compare to $frac1n$:$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n}\
=lim_{ntoinfty}frac{ln^an}{n^{a-1}}=infty$$
Even if $a<0$, the limit still diverges to infinity. Hence the series diverges.
answered Dec 14 '18 at 3:07
Kemono ChenKemono Chen
3,0721743
3,0721743
$begingroup$
$$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$$
$endgroup$
– Mark Viola
Dec 14 '18 at 4:01
$begingroup$
@MarkViola Could you please explain it more explicitly
$endgroup$
– Kemono Chen
Dec 14 '18 at 4:04
add a comment |
$begingroup$
$$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$$
$endgroup$
– Mark Viola
Dec 14 '18 at 4:01
$begingroup$
@MarkViola Could you please explain it more explicitly
$endgroup$
– Kemono Chen
Dec 14 '18 at 4:04
$begingroup$
$$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$$
$endgroup$
– Mark Viola
Dec 14 '18 at 4:01
$begingroup$
$$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$$
$endgroup$
– Mark Viola
Dec 14 '18 at 4:01
$begingroup$
@MarkViola Could you please explain it more explicitly
$endgroup$
– Kemono Chen
Dec 14 '18 at 4:04
$begingroup$
@MarkViola Could you please explain it more explicitly
$endgroup$
– Kemono Chen
Dec 14 '18 at 4:04
add a comment |
$begingroup$
In a comment, the OP asked "Could you please explain it more explicitly," which referenced the comment I left "$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$". To address the OP's request, we now proceed.
Using $e^x<frac1{1-x}$ for $x<1$ and $minleft(1-frac1nlog(n)right)=1-e^{-1} $ we have
$$begin{align}
sqrt[n]{n}-1 &=e^{frac1nlog(n)}-1\\
&le frac{frac1nlog(n)}{1-frac1nlog(n)}\\
&le frac{e}{e-1} frac{log(n)}{n}end{align}$$
$endgroup$
$begingroup$
I think you were going to use the formula to point out the mistake in my solution. Sorry for not expressing my thought correctly.
$endgroup$
– Kemono Chen
Dec 14 '18 at 5:54
add a comment |
$begingroup$
In a comment, the OP asked "Could you please explain it more explicitly," which referenced the comment I left "$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$". To address the OP's request, we now proceed.
Using $e^x<frac1{1-x}$ for $x<1$ and $minleft(1-frac1nlog(n)right)=1-e^{-1} $ we have
$$begin{align}
sqrt[n]{n}-1 &=e^{frac1nlog(n)}-1\\
&le frac{frac1nlog(n)}{1-frac1nlog(n)}\\
&le frac{e}{e-1} frac{log(n)}{n}end{align}$$
$endgroup$
$begingroup$
I think you were going to use the formula to point out the mistake in my solution. Sorry for not expressing my thought correctly.
$endgroup$
– Kemono Chen
Dec 14 '18 at 5:54
add a comment |
$begingroup$
In a comment, the OP asked "Could you please explain it more explicitly," which referenced the comment I left "$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$". To address the OP's request, we now proceed.
Using $e^x<frac1{1-x}$ for $x<1$ and $minleft(1-frac1nlog(n)right)=1-e^{-1} $ we have
$$begin{align}
sqrt[n]{n}-1 &=e^{frac1nlog(n)}-1\\
&le frac{frac1nlog(n)}{1-frac1nlog(n)}\\
&le frac{e}{e-1} frac{log(n)}{n}end{align}$$
$endgroup$
In a comment, the OP asked "Could you please explain it more explicitly," which referenced the comment I left "$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$". To address the OP's request, we now proceed.
Using $e^x<frac1{1-x}$ for $x<1$ and $minleft(1-frac1nlog(n)right)=1-e^{-1} $ we have
$$begin{align}
sqrt[n]{n}-1 &=e^{frac1nlog(n)}-1\\
&le frac{frac1nlog(n)}{1-frac1nlog(n)}\\
&le frac{e}{e-1} frac{log(n)}{n}end{align}$$
edited Dec 14 '18 at 4:16
answered Dec 14 '18 at 4:10
Mark ViolaMark Viola
132k1275173
132k1275173
$begingroup$
I think you were going to use the formula to point out the mistake in my solution. Sorry for not expressing my thought correctly.
$endgroup$
– Kemono Chen
Dec 14 '18 at 5:54
add a comment |
$begingroup$
I think you were going to use the formula to point out the mistake in my solution. Sorry for not expressing my thought correctly.
$endgroup$
– Kemono Chen
Dec 14 '18 at 5:54
$begingroup$
I think you were going to use the formula to point out the mistake in my solution. Sorry for not expressing my thought correctly.
$endgroup$
– Kemono Chen
Dec 14 '18 at 5:54
$begingroup$
I think you were going to use the formula to point out the mistake in my solution. Sorry for not expressing my thought correctly.
$endgroup$
– Kemono Chen
Dec 14 '18 at 5:54
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038848%2fwhen-the-series-sum-n-2-infty-sqrtnn-1a-is-convergent-depending%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown