When the series $sum_{n=2}^{+infty }(sqrt[n]{n}-1)^a$ is convergent depending on $ainBbb R$?












1












$begingroup$


When the series $sum_{n=2}^{+infty }(sqrt[n]{n}-1)^a$ is convergent depending on $ainBbb R$?



For $a=0 $ the series is divergent.



Else:



$sqrt[n]{n}-1=frac{e^{1/nln n}-1}{1/n ln n}cdot frac{1}{n}ln nsimfrac{ln n}{n}$



So, $sqrt[n]{n}-1$ is asymptotically similar to $frac{ln n}{n}$, and $(sqrt[n]{n}-1)^a$ will converge when $(frac{ln n}{n})^a$ converges. But I don't know how to finish it. Could you help me?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    When the series $sum_{n=2}^{+infty }(sqrt[n]{n}-1)^a$ is convergent depending on $ainBbb R$?



    For $a=0 $ the series is divergent.



    Else:



    $sqrt[n]{n}-1=frac{e^{1/nln n}-1}{1/n ln n}cdot frac{1}{n}ln nsimfrac{ln n}{n}$



    So, $sqrt[n]{n}-1$ is asymptotically similar to $frac{ln n}{n}$, and $(sqrt[n]{n}-1)^a$ will converge when $(frac{ln n}{n})^a$ converges. But I don't know how to finish it. Could you help me?










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      When the series $sum_{n=2}^{+infty }(sqrt[n]{n}-1)^a$ is convergent depending on $ainBbb R$?



      For $a=0 $ the series is divergent.



      Else:



      $sqrt[n]{n}-1=frac{e^{1/nln n}-1}{1/n ln n}cdot frac{1}{n}ln nsimfrac{ln n}{n}$



      So, $sqrt[n]{n}-1$ is asymptotically similar to $frac{ln n}{n}$, and $(sqrt[n]{n}-1)^a$ will converge when $(frac{ln n}{n})^a$ converges. But I don't know how to finish it. Could you help me?










      share|cite|improve this question









      $endgroup$




      When the series $sum_{n=2}^{+infty }(sqrt[n]{n}-1)^a$ is convergent depending on $ainBbb R$?



      For $a=0 $ the series is divergent.



      Else:



      $sqrt[n]{n}-1=frac{e^{1/nln n}-1}{1/n ln n}cdot frac{1}{n}ln nsimfrac{ln n}{n}$



      So, $sqrt[n]{n}-1$ is asymptotically similar to $frac{ln n}{n}$, and $(sqrt[n]{n}-1)^a$ will converge when $(frac{ln n}{n})^a$ converges. But I don't know how to finish it. Could you help me?







      real-analysis sequences-and-series convergence






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 14 '18 at 2:27









      matematicccmatematiccc

      1275




      1275






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          For $a>1$, compare to $frac1{n^{1+(a-1)/2}}$:
          $$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n^{1+(a-1)/2}}\
          =lim_{ntoinfty}frac{ln^an}{n^{a/2-1/2}}$$

          Since $a>1$, $frac a2-frac12>0$, hence the limit equals $0$. The series converges.

          For $ale 1$, compare to $frac1n$:$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n}\
          =lim_{ntoinfty}frac{ln^an}{n^{a-1}}=infty$$

          Even if $a<0$, the limit still diverges to infinity. Hence the series diverges.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            $$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$$
            $endgroup$
            – Mark Viola
            Dec 14 '18 at 4:01










          • $begingroup$
            @MarkViola Could you please explain it more explicitly
            $endgroup$
            – Kemono Chen
            Dec 14 '18 at 4:04



















          1












          $begingroup$


          In a comment, the OP asked "Could you please explain it more explicitly," which referenced the comment I left "$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$". To address the OP's request, we now proceed.






          Using $e^x<frac1{1-x}$ for $x<1$ and $minleft(1-frac1nlog(n)right)=1-e^{-1} $ we have



          $$begin{align}
          sqrt[n]{n}-1 &=e^{frac1nlog(n)}-1\\
          &le frac{frac1nlog(n)}{1-frac1nlog(n)}\\
          &le frac{e}{e-1} frac{log(n)}{n}end{align}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I think you were going to use the formula to point out the mistake in my solution. Sorry for not expressing my thought correctly.
            $endgroup$
            – Kemono Chen
            Dec 14 '18 at 5:54











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038848%2fwhen-the-series-sum-n-2-infty-sqrtnn-1a-is-convergent-depending%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          For $a>1$, compare to $frac1{n^{1+(a-1)/2}}$:
          $$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n^{1+(a-1)/2}}\
          =lim_{ntoinfty}frac{ln^an}{n^{a/2-1/2}}$$

          Since $a>1$, $frac a2-frac12>0$, hence the limit equals $0$. The series converges.

          For $ale 1$, compare to $frac1n$:$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n}\
          =lim_{ntoinfty}frac{ln^an}{n^{a-1}}=infty$$

          Even if $a<0$, the limit still diverges to infinity. Hence the series diverges.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            $$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$$
            $endgroup$
            – Mark Viola
            Dec 14 '18 at 4:01










          • $begingroup$
            @MarkViola Could you please explain it more explicitly
            $endgroup$
            – Kemono Chen
            Dec 14 '18 at 4:04
















          1












          $begingroup$

          For $a>1$, compare to $frac1{n^{1+(a-1)/2}}$:
          $$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n^{1+(a-1)/2}}\
          =lim_{ntoinfty}frac{ln^an}{n^{a/2-1/2}}$$

          Since $a>1$, $frac a2-frac12>0$, hence the limit equals $0$. The series converges.

          For $ale 1$, compare to $frac1n$:$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n}\
          =lim_{ntoinfty}frac{ln^an}{n^{a-1}}=infty$$

          Even if $a<0$, the limit still diverges to infinity. Hence the series diverges.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            $$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$$
            $endgroup$
            – Mark Viola
            Dec 14 '18 at 4:01










          • $begingroup$
            @MarkViola Could you please explain it more explicitly
            $endgroup$
            – Kemono Chen
            Dec 14 '18 at 4:04














          1












          1








          1





          $begingroup$

          For $a>1$, compare to $frac1{n^{1+(a-1)/2}}$:
          $$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n^{1+(a-1)/2}}\
          =lim_{ntoinfty}frac{ln^an}{n^{a/2-1/2}}$$

          Since $a>1$, $frac a2-frac12>0$, hence the limit equals $0$. The series converges.

          For $ale 1$, compare to $frac1n$:$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n}\
          =lim_{ntoinfty}frac{ln^an}{n^{a-1}}=infty$$

          Even if $a<0$, the limit still diverges to infinity. Hence the series diverges.






          share|cite|improve this answer









          $endgroup$



          For $a>1$, compare to $frac1{n^{1+(a-1)/2}}$:
          $$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n^{1+(a-1)/2}}\
          =lim_{ntoinfty}frac{ln^an}{n^{a/2-1/2}}$$

          Since $a>1$, $frac a2-frac12>0$, hence the limit equals $0$. The series converges.

          For $ale 1$, compare to $frac1n$:$$lim_{ntoinfty}left(frac{ln n}{n}right)^aBig/frac1{n}\
          =lim_{ntoinfty}frac{ln^an}{n^{a-1}}=infty$$

          Even if $a<0$, the limit still diverges to infinity. Hence the series diverges.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 14 '18 at 3:07









          Kemono ChenKemono Chen

          3,0721743




          3,0721743












          • $begingroup$
            $$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$$
            $endgroup$
            – Mark Viola
            Dec 14 '18 at 4:01










          • $begingroup$
            @MarkViola Could you please explain it more explicitly
            $endgroup$
            – Kemono Chen
            Dec 14 '18 at 4:04


















          • $begingroup$
            $$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$$
            $endgroup$
            – Mark Viola
            Dec 14 '18 at 4:01










          • $begingroup$
            @MarkViola Could you please explain it more explicitly
            $endgroup$
            – Kemono Chen
            Dec 14 '18 at 4:04
















          $begingroup$
          $$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$$
          $endgroup$
          – Mark Viola
          Dec 14 '18 at 4:01




          $begingroup$
          $$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$$
          $endgroup$
          – Mark Viola
          Dec 14 '18 at 4:01












          $begingroup$
          @MarkViola Could you please explain it more explicitly
          $endgroup$
          – Kemono Chen
          Dec 14 '18 at 4:04




          $begingroup$
          @MarkViola Could you please explain it more explicitly
          $endgroup$
          – Kemono Chen
          Dec 14 '18 at 4:04











          1












          $begingroup$


          In a comment, the OP asked "Could you please explain it more explicitly," which referenced the comment I left "$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$". To address the OP's request, we now proceed.






          Using $e^x<frac1{1-x}$ for $x<1$ and $minleft(1-frac1nlog(n)right)=1-e^{-1} $ we have



          $$begin{align}
          sqrt[n]{n}-1 &=e^{frac1nlog(n)}-1\\
          &le frac{frac1nlog(n)}{1-frac1nlog(n)}\\
          &le frac{e}{e-1} frac{log(n)}{n}end{align}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I think you were going to use the formula to point out the mistake in my solution. Sorry for not expressing my thought correctly.
            $endgroup$
            – Kemono Chen
            Dec 14 '18 at 5:54
















          1












          $begingroup$


          In a comment, the OP asked "Could you please explain it more explicitly," which referenced the comment I left "$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$". To address the OP's request, we now proceed.






          Using $e^x<frac1{1-x}$ for $x<1$ and $minleft(1-frac1nlog(n)right)=1-e^{-1} $ we have



          $$begin{align}
          sqrt[n]{n}-1 &=e^{frac1nlog(n)}-1\\
          &le frac{frac1nlog(n)}{1-frac1nlog(n)}\\
          &le frac{e}{e-1} frac{log(n)}{n}end{align}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I think you were going to use the formula to point out the mistake in my solution. Sorry for not expressing my thought correctly.
            $endgroup$
            – Kemono Chen
            Dec 14 '18 at 5:54














          1












          1








          1





          $begingroup$


          In a comment, the OP asked "Could you please explain it more explicitly," which referenced the comment I left "$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$". To address the OP's request, we now proceed.






          Using $e^x<frac1{1-x}$ for $x<1$ and $minleft(1-frac1nlog(n)right)=1-e^{-1} $ we have



          $$begin{align}
          sqrt[n]{n}-1 &=e^{frac1nlog(n)}-1\\
          &le frac{frac1nlog(n)}{1-frac1nlog(n)}\\
          &le frac{e}{e-1} frac{log(n)}{n}end{align}$$






          share|cite|improve this answer











          $endgroup$




          In a comment, the OP asked "Could you please explain it more explicitly," which referenced the comment I left "$sqrt[n]{n}-1le frac{e}{e-1} frac{log(n)}{n}$". To address the OP's request, we now proceed.






          Using $e^x<frac1{1-x}$ for $x<1$ and $minleft(1-frac1nlog(n)right)=1-e^{-1} $ we have



          $$begin{align}
          sqrt[n]{n}-1 &=e^{frac1nlog(n)}-1\\
          &le frac{frac1nlog(n)}{1-frac1nlog(n)}\\
          &le frac{e}{e-1} frac{log(n)}{n}end{align}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 14 '18 at 4:16

























          answered Dec 14 '18 at 4:10









          Mark ViolaMark Viola

          132k1275173




          132k1275173












          • $begingroup$
            I think you were going to use the formula to point out the mistake in my solution. Sorry for not expressing my thought correctly.
            $endgroup$
            – Kemono Chen
            Dec 14 '18 at 5:54


















          • $begingroup$
            I think you were going to use the formula to point out the mistake in my solution. Sorry for not expressing my thought correctly.
            $endgroup$
            – Kemono Chen
            Dec 14 '18 at 5:54
















          $begingroup$
          I think you were going to use the formula to point out the mistake in my solution. Sorry for not expressing my thought correctly.
          $endgroup$
          – Kemono Chen
          Dec 14 '18 at 5:54




          $begingroup$
          I think you were going to use the formula to point out the mistake in my solution. Sorry for not expressing my thought correctly.
          $endgroup$
          – Kemono Chen
          Dec 14 '18 at 5:54


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038848%2fwhen-the-series-sum-n-2-infty-sqrtnn-1a-is-convergent-depending%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          To store a contact into the json file from server.js file using a class in NodeJS

          Redirect URL with Chrome Remote Debugging Android Devices

          Dieringhausen