How can I evaluate the left limit of this function?
$begingroup$
If $f(x) = {{sqrt[4]{x^2tan^2 4x}}over{2x}}$
How can I evaluate
$$lim_{xto 0^-} f(x)$$
Here's what I tried:
begin{align}
lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{2x}}
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{x}} \
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{-sqrt[4]{x^4}}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}}
end{align}
In the second step I wrote $x$ as $-sqrt[4]{x^4}$ because we are working with the left limit which is on the left of $0$
begin{align}
-{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}} & = -{1over 2}lim_{xto 0^-} sqrt[4]{{tan^2 4x}over{x^2}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{left({tan 4x}over{x}right)^2} \
& = -{1over 2} sqrt[4]{left( lim_{xto 0^-} {{tan 4x}over{x}}right)^2} \
& = -{1over 2} sqrt[4]{(4)^2} \
& = -{1over 2} sqrt[4]{16} \
& = -{1over 2} × 2 = -1
end{align}
Are all these steps correct?
I feel something wrong about the second step, because I found some other people who solved it $1$ and not $-1$ as my solution brought me.
real-analysis calculus limits-without-lhopital
$endgroup$
add a comment |
$begingroup$
If $f(x) = {{sqrt[4]{x^2tan^2 4x}}over{2x}}$
How can I evaluate
$$lim_{xto 0^-} f(x)$$
Here's what I tried:
begin{align}
lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{2x}}
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{x}} \
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{-sqrt[4]{x^4}}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}}
end{align}
In the second step I wrote $x$ as $-sqrt[4]{x^4}$ because we are working with the left limit which is on the left of $0$
begin{align}
-{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}} & = -{1over 2}lim_{xto 0^-} sqrt[4]{{tan^2 4x}over{x^2}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{left({tan 4x}over{x}right)^2} \
& = -{1over 2} sqrt[4]{left( lim_{xto 0^-} {{tan 4x}over{x}}right)^2} \
& = -{1over 2} sqrt[4]{(4)^2} \
& = -{1over 2} sqrt[4]{16} \
& = -{1over 2} × 2 = -1
end{align}
Are all these steps correct?
I feel something wrong about the second step, because I found some other people who solved it $1$ and not $-1$ as my solution brought me.
real-analysis calculus limits-without-lhopital
$endgroup$
$begingroup$
No I haven't but if you look at the tags, you will see that I don't want to use l'Hopital
$endgroup$
– Yousef Essam
Dec 29 '18 at 20:06
1
$begingroup$
What have you tried so far?
$endgroup$
– user458276
Dec 29 '18 at 20:08
$begingroup$
In that case, you'll probably need to split up tan into sin/cos, and use the usual identities for $lim_{xto 0}sin(x)/x=1$ and $lim_{xto 0}(1-cos(x))/x=0$.
$endgroup$
– Ben W
Dec 29 '18 at 20:09
$begingroup$
Take the $2x$ inside the root and cancel the $x^2$. Denominator will become $16x^2$. Then use $lim_{xto 0}{frac{tan(x)}{x}}=1$
$endgroup$
– Sauhard Sharma
Dec 29 '18 at 20:10
$begingroup$
Only that with sine @Ben.
$endgroup$
– user376343
Dec 29 '18 at 20:11
add a comment |
$begingroup$
If $f(x) = {{sqrt[4]{x^2tan^2 4x}}over{2x}}$
How can I evaluate
$$lim_{xto 0^-} f(x)$$
Here's what I tried:
begin{align}
lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{2x}}
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{x}} \
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{-sqrt[4]{x^4}}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}}
end{align}
In the second step I wrote $x$ as $-sqrt[4]{x^4}$ because we are working with the left limit which is on the left of $0$
begin{align}
-{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}} & = -{1over 2}lim_{xto 0^-} sqrt[4]{{tan^2 4x}over{x^2}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{left({tan 4x}over{x}right)^2} \
& = -{1over 2} sqrt[4]{left( lim_{xto 0^-} {{tan 4x}over{x}}right)^2} \
& = -{1over 2} sqrt[4]{(4)^2} \
& = -{1over 2} sqrt[4]{16} \
& = -{1over 2} × 2 = -1
end{align}
Are all these steps correct?
I feel something wrong about the second step, because I found some other people who solved it $1$ and not $-1$ as my solution brought me.
real-analysis calculus limits-without-lhopital
$endgroup$
If $f(x) = {{sqrt[4]{x^2tan^2 4x}}over{2x}}$
How can I evaluate
$$lim_{xto 0^-} f(x)$$
Here's what I tried:
begin{align}
lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{2x}}
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{x}} \
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{-sqrt[4]{x^4}}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}}
end{align}
In the second step I wrote $x$ as $-sqrt[4]{x^4}$ because we are working with the left limit which is on the left of $0$
begin{align}
-{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}} & = -{1over 2}lim_{xto 0^-} sqrt[4]{{tan^2 4x}over{x^2}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{left({tan 4x}over{x}right)^2} \
& = -{1over 2} sqrt[4]{left( lim_{xto 0^-} {{tan 4x}over{x}}right)^2} \
& = -{1over 2} sqrt[4]{(4)^2} \
& = -{1over 2} sqrt[4]{16} \
& = -{1over 2} × 2 = -1
end{align}
Are all these steps correct?
I feel something wrong about the second step, because I found some other people who solved it $1$ and not $-1$ as my solution brought me.
real-analysis calculus limits-without-lhopital
real-analysis calculus limits-without-lhopital
edited Dec 29 '18 at 20:32
Yousef Essam
asked Dec 29 '18 at 20:00
Yousef EssamYousef Essam
335
335
$begingroup$
No I haven't but if you look at the tags, you will see that I don't want to use l'Hopital
$endgroup$
– Yousef Essam
Dec 29 '18 at 20:06
1
$begingroup$
What have you tried so far?
$endgroup$
– user458276
Dec 29 '18 at 20:08
$begingroup$
In that case, you'll probably need to split up tan into sin/cos, and use the usual identities for $lim_{xto 0}sin(x)/x=1$ and $lim_{xto 0}(1-cos(x))/x=0$.
$endgroup$
– Ben W
Dec 29 '18 at 20:09
$begingroup$
Take the $2x$ inside the root and cancel the $x^2$. Denominator will become $16x^2$. Then use $lim_{xto 0}{frac{tan(x)}{x}}=1$
$endgroup$
– Sauhard Sharma
Dec 29 '18 at 20:10
$begingroup$
Only that with sine @Ben.
$endgroup$
– user376343
Dec 29 '18 at 20:11
add a comment |
$begingroup$
No I haven't but if you look at the tags, you will see that I don't want to use l'Hopital
$endgroup$
– Yousef Essam
Dec 29 '18 at 20:06
1
$begingroup$
What have you tried so far?
$endgroup$
– user458276
Dec 29 '18 at 20:08
$begingroup$
In that case, you'll probably need to split up tan into sin/cos, and use the usual identities for $lim_{xto 0}sin(x)/x=1$ and $lim_{xto 0}(1-cos(x))/x=0$.
$endgroup$
– Ben W
Dec 29 '18 at 20:09
$begingroup$
Take the $2x$ inside the root and cancel the $x^2$. Denominator will become $16x^2$. Then use $lim_{xto 0}{frac{tan(x)}{x}}=1$
$endgroup$
– Sauhard Sharma
Dec 29 '18 at 20:10
$begingroup$
Only that with sine @Ben.
$endgroup$
– user376343
Dec 29 '18 at 20:11
$begingroup$
No I haven't but if you look at the tags, you will see that I don't want to use l'Hopital
$endgroup$
– Yousef Essam
Dec 29 '18 at 20:06
$begingroup$
No I haven't but if you look at the tags, you will see that I don't want to use l'Hopital
$endgroup$
– Yousef Essam
Dec 29 '18 at 20:06
1
1
$begingroup$
What have you tried so far?
$endgroup$
– user458276
Dec 29 '18 at 20:08
$begingroup$
What have you tried so far?
$endgroup$
– user458276
Dec 29 '18 at 20:08
$begingroup$
In that case, you'll probably need to split up tan into sin/cos, and use the usual identities for $lim_{xto 0}sin(x)/x=1$ and $lim_{xto 0}(1-cos(x))/x=0$.
$endgroup$
– Ben W
Dec 29 '18 at 20:09
$begingroup$
In that case, you'll probably need to split up tan into sin/cos, and use the usual identities for $lim_{xto 0}sin(x)/x=1$ and $lim_{xto 0}(1-cos(x))/x=0$.
$endgroup$
– Ben W
Dec 29 '18 at 20:09
$begingroup$
Take the $2x$ inside the root and cancel the $x^2$. Denominator will become $16x^2$. Then use $lim_{xto 0}{frac{tan(x)}{x}}=1$
$endgroup$
– Sauhard Sharma
Dec 29 '18 at 20:10
$begingroup$
Take the $2x$ inside the root and cancel the $x^2$. Denominator will become $16x^2$. Then use $lim_{xto 0}{frac{tan(x)}{x}}=1$
$endgroup$
– Sauhard Sharma
Dec 29 '18 at 20:10
$begingroup$
Only that with sine @Ben.
$endgroup$
– user376343
Dec 29 '18 at 20:11
$begingroup$
Only that with sine @Ben.
$endgroup$
– user376343
Dec 29 '18 at 20:11
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I would write $$lim_{xto 0^-}frac{sqrt{|xtan(4x)|}}{2x}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056201%2fhow-can-i-evaluate-the-left-limit-of-this-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I would write $$lim_{xto 0^-}frac{sqrt{|xtan(4x)|}}{2x}$$
$endgroup$
add a comment |
$begingroup$
I would write $$lim_{xto 0^-}frac{sqrt{|xtan(4x)|}}{2x}$$
$endgroup$
add a comment |
$begingroup$
I would write $$lim_{xto 0^-}frac{sqrt{|xtan(4x)|}}{2x}$$
$endgroup$
I would write $$lim_{xto 0^-}frac{sqrt{|xtan(4x)|}}{2x}$$
answered Dec 29 '18 at 20:12
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
77.9k42866
77.9k42866
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056201%2fhow-can-i-evaluate-the-left-limit-of-this-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
No I haven't but if you look at the tags, you will see that I don't want to use l'Hopital
$endgroup$
– Yousef Essam
Dec 29 '18 at 20:06
1
$begingroup$
What have you tried so far?
$endgroup$
– user458276
Dec 29 '18 at 20:08
$begingroup$
In that case, you'll probably need to split up tan into sin/cos, and use the usual identities for $lim_{xto 0}sin(x)/x=1$ and $lim_{xto 0}(1-cos(x))/x=0$.
$endgroup$
– Ben W
Dec 29 '18 at 20:09
$begingroup$
Take the $2x$ inside the root and cancel the $x^2$. Denominator will become $16x^2$. Then use $lim_{xto 0}{frac{tan(x)}{x}}=1$
$endgroup$
– Sauhard Sharma
Dec 29 '18 at 20:10
$begingroup$
Only that with sine @Ben.
$endgroup$
– user376343
Dec 29 '18 at 20:11