How can I evaluate the left limit of this function?












1












$begingroup$


If $f(x) = {{sqrt[4]{x^2tan^2 4x}}over{2x}}$



How can I evaluate
$$lim_{xto 0^-} f(x)$$



Here's what I tried:



begin{align}
lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{2x}}
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{x}} \
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{-sqrt[4]{x^4}}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}}
end{align}



In the second step I wrote $x$ as $-sqrt[4]{x^4}$ because we are working with the left limit which is on the left of $0$



begin{align}
-{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}} & = -{1over 2}lim_{xto 0^-} sqrt[4]{{tan^2 4x}over{x^2}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{left({tan 4x}over{x}right)^2} \
& = -{1over 2} sqrt[4]{left( lim_{xto 0^-} {{tan 4x}over{x}}right)^2} \
& = -{1over 2} sqrt[4]{(4)^2} \
& = -{1over 2} sqrt[4]{16} \
& = -{1over 2} × 2 = -1
end{align}



Are all these steps correct?
I feel something wrong about the second step, because I found some other people who solved it $1$ and not $-1$ as my solution brought me.










share|cite|improve this question











$endgroup$












  • $begingroup$
    No I haven't but if you look at the tags, you will see that I don't want to use l'Hopital
    $endgroup$
    – Yousef Essam
    Dec 29 '18 at 20:06








  • 1




    $begingroup$
    What have you tried so far?
    $endgroup$
    – user458276
    Dec 29 '18 at 20:08










  • $begingroup$
    In that case, you'll probably need to split up tan into sin/cos, and use the usual identities for $lim_{xto 0}sin(x)/x=1$ and $lim_{xto 0}(1-cos(x))/x=0$.
    $endgroup$
    – Ben W
    Dec 29 '18 at 20:09










  • $begingroup$
    Take the $2x$ inside the root and cancel the $x^2$. Denominator will become $16x^2$. Then use $lim_{xto 0}{frac{tan(x)}{x}}=1$
    $endgroup$
    – Sauhard Sharma
    Dec 29 '18 at 20:10










  • $begingroup$
    Only that with sine @Ben.
    $endgroup$
    – user376343
    Dec 29 '18 at 20:11
















1












$begingroup$


If $f(x) = {{sqrt[4]{x^2tan^2 4x}}over{2x}}$



How can I evaluate
$$lim_{xto 0^-} f(x)$$



Here's what I tried:



begin{align}
lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{2x}}
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{x}} \
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{-sqrt[4]{x^4}}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}}
end{align}



In the second step I wrote $x$ as $-sqrt[4]{x^4}$ because we are working with the left limit which is on the left of $0$



begin{align}
-{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}} & = -{1over 2}lim_{xto 0^-} sqrt[4]{{tan^2 4x}over{x^2}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{left({tan 4x}over{x}right)^2} \
& = -{1over 2} sqrt[4]{left( lim_{xto 0^-} {{tan 4x}over{x}}right)^2} \
& = -{1over 2} sqrt[4]{(4)^2} \
& = -{1over 2} sqrt[4]{16} \
& = -{1over 2} × 2 = -1
end{align}



Are all these steps correct?
I feel something wrong about the second step, because I found some other people who solved it $1$ and not $-1$ as my solution brought me.










share|cite|improve this question











$endgroup$












  • $begingroup$
    No I haven't but if you look at the tags, you will see that I don't want to use l'Hopital
    $endgroup$
    – Yousef Essam
    Dec 29 '18 at 20:06








  • 1




    $begingroup$
    What have you tried so far?
    $endgroup$
    – user458276
    Dec 29 '18 at 20:08










  • $begingroup$
    In that case, you'll probably need to split up tan into sin/cos, and use the usual identities for $lim_{xto 0}sin(x)/x=1$ and $lim_{xto 0}(1-cos(x))/x=0$.
    $endgroup$
    – Ben W
    Dec 29 '18 at 20:09










  • $begingroup$
    Take the $2x$ inside the root and cancel the $x^2$. Denominator will become $16x^2$. Then use $lim_{xto 0}{frac{tan(x)}{x}}=1$
    $endgroup$
    – Sauhard Sharma
    Dec 29 '18 at 20:10










  • $begingroup$
    Only that with sine @Ben.
    $endgroup$
    – user376343
    Dec 29 '18 at 20:11














1












1








1





$begingroup$


If $f(x) = {{sqrt[4]{x^2tan^2 4x}}over{2x}}$



How can I evaluate
$$lim_{xto 0^-} f(x)$$



Here's what I tried:



begin{align}
lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{2x}}
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{x}} \
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{-sqrt[4]{x^4}}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}}
end{align}



In the second step I wrote $x$ as $-sqrt[4]{x^4}$ because we are working with the left limit which is on the left of $0$



begin{align}
-{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}} & = -{1over 2}lim_{xto 0^-} sqrt[4]{{tan^2 4x}over{x^2}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{left({tan 4x}over{x}right)^2} \
& = -{1over 2} sqrt[4]{left( lim_{xto 0^-} {{tan 4x}over{x}}right)^2} \
& = -{1over 2} sqrt[4]{(4)^2} \
& = -{1over 2} sqrt[4]{16} \
& = -{1over 2} × 2 = -1
end{align}



Are all these steps correct?
I feel something wrong about the second step, because I found some other people who solved it $1$ and not $-1$ as my solution brought me.










share|cite|improve this question











$endgroup$




If $f(x) = {{sqrt[4]{x^2tan^2 4x}}over{2x}}$



How can I evaluate
$$lim_{xto 0^-} f(x)$$



Here's what I tried:



begin{align}
lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{2x}}
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{x}} \
& = {1over 2}lim_{xto 0^-} {{sqrt[4]{x^2tan^2 4x}}over{-sqrt[4]{x^4}}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}}
end{align}



In the second step I wrote $x$ as $-sqrt[4]{x^4}$ because we are working with the left limit which is on the left of $0$



begin{align}
-{1over 2}lim_{xto 0^-} sqrt[4]{{x^2tan^2 4x}over{x^4}} & = -{1over 2}lim_{xto 0^-} sqrt[4]{{tan^2 4x}over{x^2}} \
& = -{1over 2}lim_{xto 0^-} sqrt[4]{left({tan 4x}over{x}right)^2} \
& = -{1over 2} sqrt[4]{left( lim_{xto 0^-} {{tan 4x}over{x}}right)^2} \
& = -{1over 2} sqrt[4]{(4)^2} \
& = -{1over 2} sqrt[4]{16} \
& = -{1over 2} × 2 = -1
end{align}



Are all these steps correct?
I feel something wrong about the second step, because I found some other people who solved it $1$ and not $-1$ as my solution brought me.







real-analysis calculus limits-without-lhopital






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 29 '18 at 20:32







Yousef Essam

















asked Dec 29 '18 at 20:00









Yousef EssamYousef Essam

335




335












  • $begingroup$
    No I haven't but if you look at the tags, you will see that I don't want to use l'Hopital
    $endgroup$
    – Yousef Essam
    Dec 29 '18 at 20:06








  • 1




    $begingroup$
    What have you tried so far?
    $endgroup$
    – user458276
    Dec 29 '18 at 20:08










  • $begingroup$
    In that case, you'll probably need to split up tan into sin/cos, and use the usual identities for $lim_{xto 0}sin(x)/x=1$ and $lim_{xto 0}(1-cos(x))/x=0$.
    $endgroup$
    – Ben W
    Dec 29 '18 at 20:09










  • $begingroup$
    Take the $2x$ inside the root and cancel the $x^2$. Denominator will become $16x^2$. Then use $lim_{xto 0}{frac{tan(x)}{x}}=1$
    $endgroup$
    – Sauhard Sharma
    Dec 29 '18 at 20:10










  • $begingroup$
    Only that with sine @Ben.
    $endgroup$
    – user376343
    Dec 29 '18 at 20:11


















  • $begingroup$
    No I haven't but if you look at the tags, you will see that I don't want to use l'Hopital
    $endgroup$
    – Yousef Essam
    Dec 29 '18 at 20:06








  • 1




    $begingroup$
    What have you tried so far?
    $endgroup$
    – user458276
    Dec 29 '18 at 20:08










  • $begingroup$
    In that case, you'll probably need to split up tan into sin/cos, and use the usual identities for $lim_{xto 0}sin(x)/x=1$ and $lim_{xto 0}(1-cos(x))/x=0$.
    $endgroup$
    – Ben W
    Dec 29 '18 at 20:09










  • $begingroup$
    Take the $2x$ inside the root and cancel the $x^2$. Denominator will become $16x^2$. Then use $lim_{xto 0}{frac{tan(x)}{x}}=1$
    $endgroup$
    – Sauhard Sharma
    Dec 29 '18 at 20:10










  • $begingroup$
    Only that with sine @Ben.
    $endgroup$
    – user376343
    Dec 29 '18 at 20:11
















$begingroup$
No I haven't but if you look at the tags, you will see that I don't want to use l'Hopital
$endgroup$
– Yousef Essam
Dec 29 '18 at 20:06






$begingroup$
No I haven't but if you look at the tags, you will see that I don't want to use l'Hopital
$endgroup$
– Yousef Essam
Dec 29 '18 at 20:06






1




1




$begingroup$
What have you tried so far?
$endgroup$
– user458276
Dec 29 '18 at 20:08




$begingroup$
What have you tried so far?
$endgroup$
– user458276
Dec 29 '18 at 20:08












$begingroup$
In that case, you'll probably need to split up tan into sin/cos, and use the usual identities for $lim_{xto 0}sin(x)/x=1$ and $lim_{xto 0}(1-cos(x))/x=0$.
$endgroup$
– Ben W
Dec 29 '18 at 20:09




$begingroup$
In that case, you'll probably need to split up tan into sin/cos, and use the usual identities for $lim_{xto 0}sin(x)/x=1$ and $lim_{xto 0}(1-cos(x))/x=0$.
$endgroup$
– Ben W
Dec 29 '18 at 20:09












$begingroup$
Take the $2x$ inside the root and cancel the $x^2$. Denominator will become $16x^2$. Then use $lim_{xto 0}{frac{tan(x)}{x}}=1$
$endgroup$
– Sauhard Sharma
Dec 29 '18 at 20:10




$begingroup$
Take the $2x$ inside the root and cancel the $x^2$. Denominator will become $16x^2$. Then use $lim_{xto 0}{frac{tan(x)}{x}}=1$
$endgroup$
– Sauhard Sharma
Dec 29 '18 at 20:10












$begingroup$
Only that with sine @Ben.
$endgroup$
– user376343
Dec 29 '18 at 20:11




$begingroup$
Only that with sine @Ben.
$endgroup$
– user376343
Dec 29 '18 at 20:11










1 Answer
1






active

oldest

votes


















1












$begingroup$

I would write $$lim_{xto 0^-}frac{sqrt{|xtan(4x)|}}{2x}$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056201%2fhow-can-i-evaluate-the-left-limit-of-this-function%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    I would write $$lim_{xto 0^-}frac{sqrt{|xtan(4x)|}}{2x}$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      I would write $$lim_{xto 0^-}frac{sqrt{|xtan(4x)|}}{2x}$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        I would write $$lim_{xto 0^-}frac{sqrt{|xtan(4x)|}}{2x}$$






        share|cite|improve this answer









        $endgroup$



        I would write $$lim_{xto 0^-}frac{sqrt{|xtan(4x)|}}{2x}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 29 '18 at 20:12









        Dr. Sonnhard GraubnerDr. Sonnhard Graubner

        77.9k42866




        77.9k42866






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056201%2fhow-can-i-evaluate-the-left-limit-of-this-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen