What to use for $lim_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dx$
$begingroup$
Determine $$lim_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dx$$
I know the three convergence theorems, but to no avail:
$1.$ Monotone Convergence:
The series $f_{n}(x):=frac{nsin{x}}{1+n^2sqrt{x}}$ is not monotonic increasing on $[0,1]$, so the conditions are not met.
$2.$ Fatou:
Note: $liminf_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dxgeqint_{[0,1]}liminf_{nto infty}frac{nsin{x}}{1+n^2sqrt{x}}dx=0$
Which aids us no further.
$3.$ Dominated Convergence Theorem:
The only function $h$ to fulfill $|f_{n}|leq h, forall n in mathbb N$ that comes to mind is $|frac{nsin{x}}{1+n^2sqrt{x}}|=frac{nsin{x}}{n^2sqrt{x}}=frac{sin{x}}{nsqrt{x}}leq frac{sin{x}}{sqrt{x}}=:h(x).$
But how do I show $h$ is $in mathcal{L}^1$?
Is there anything I am missing? Any guidance is greatly appreciated.
real-analysis measure-theory convergence
$endgroup$
add a comment |
$begingroup$
Determine $$lim_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dx$$
I know the three convergence theorems, but to no avail:
$1.$ Monotone Convergence:
The series $f_{n}(x):=frac{nsin{x}}{1+n^2sqrt{x}}$ is not monotonic increasing on $[0,1]$, so the conditions are not met.
$2.$ Fatou:
Note: $liminf_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dxgeqint_{[0,1]}liminf_{nto infty}frac{nsin{x}}{1+n^2sqrt{x}}dx=0$
Which aids us no further.
$3.$ Dominated Convergence Theorem:
The only function $h$ to fulfill $|f_{n}|leq h, forall n in mathbb N$ that comes to mind is $|frac{nsin{x}}{1+n^2sqrt{x}}|=frac{nsin{x}}{n^2sqrt{x}}=frac{sin{x}}{nsqrt{x}}leq frac{sin{x}}{sqrt{x}}=:h(x).$
But how do I show $h$ is $in mathcal{L}^1$?
Is there anything I am missing? Any guidance is greatly appreciated.
real-analysis measure-theory convergence
$endgroup$
add a comment |
$begingroup$
Determine $$lim_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dx$$
I know the three convergence theorems, but to no avail:
$1.$ Monotone Convergence:
The series $f_{n}(x):=frac{nsin{x}}{1+n^2sqrt{x}}$ is not monotonic increasing on $[0,1]$, so the conditions are not met.
$2.$ Fatou:
Note: $liminf_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dxgeqint_{[0,1]}liminf_{nto infty}frac{nsin{x}}{1+n^2sqrt{x}}dx=0$
Which aids us no further.
$3.$ Dominated Convergence Theorem:
The only function $h$ to fulfill $|f_{n}|leq h, forall n in mathbb N$ that comes to mind is $|frac{nsin{x}}{1+n^2sqrt{x}}|=frac{nsin{x}}{n^2sqrt{x}}=frac{sin{x}}{nsqrt{x}}leq frac{sin{x}}{sqrt{x}}=:h(x).$
But how do I show $h$ is $in mathcal{L}^1$?
Is there anything I am missing? Any guidance is greatly appreciated.
real-analysis measure-theory convergence
$endgroup$
Determine $$lim_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dx$$
I know the three convergence theorems, but to no avail:
$1.$ Monotone Convergence:
The series $f_{n}(x):=frac{nsin{x}}{1+n^2sqrt{x}}$ is not monotonic increasing on $[0,1]$, so the conditions are not met.
$2.$ Fatou:
Note: $liminf_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dxgeqint_{[0,1]}liminf_{nto infty}frac{nsin{x}}{1+n^2sqrt{x}}dx=0$
Which aids us no further.
$3.$ Dominated Convergence Theorem:
The only function $h$ to fulfill $|f_{n}|leq h, forall n in mathbb N$ that comes to mind is $|frac{nsin{x}}{1+n^2sqrt{x}}|=frac{nsin{x}}{n^2sqrt{x}}=frac{sin{x}}{nsqrt{x}}leq frac{sin{x}}{sqrt{x}}=:h(x).$
But how do I show $h$ is $in mathcal{L}^1$?
Is there anything I am missing? Any guidance is greatly appreciated.
real-analysis measure-theory convergence
real-analysis measure-theory convergence
edited Dec 29 '18 at 20:03
Namaste
1
1
asked Dec 29 '18 at 19:56
SABOYSABOY
668311
668311
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Use dominated convergence with $h(x)=frac{sin(x)}{x}$ for $xin(0,1]$ and $h(0)=1$.
$endgroup$
add a comment |
$begingroup$
You’re almost there... the map $h : x mapsto frac{sin x}{sqrt x}$ has $0$ for limit as $x to 0$. Hence can be extended by continuity on $[0,1]$ and is integrable on that interval.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056199%2fwhat-to-use-for-lim-n-to-infty-int-0-1-fracn-sinx1n2-sqrtxdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use dominated convergence with $h(x)=frac{sin(x)}{x}$ for $xin(0,1]$ and $h(0)=1$.
$endgroup$
add a comment |
$begingroup$
Use dominated convergence with $h(x)=frac{sin(x)}{x}$ for $xin(0,1]$ and $h(0)=1$.
$endgroup$
add a comment |
$begingroup$
Use dominated convergence with $h(x)=frac{sin(x)}{x}$ for $xin(0,1]$ and $h(0)=1$.
$endgroup$
Use dominated convergence with $h(x)=frac{sin(x)}{x}$ for $xin(0,1]$ and $h(0)=1$.
answered Dec 29 '18 at 20:04
Ben WBen W
2,276615
2,276615
add a comment |
add a comment |
$begingroup$
You’re almost there... the map $h : x mapsto frac{sin x}{sqrt x}$ has $0$ for limit as $x to 0$. Hence can be extended by continuity on $[0,1]$ and is integrable on that interval.
$endgroup$
add a comment |
$begingroup$
You’re almost there... the map $h : x mapsto frac{sin x}{sqrt x}$ has $0$ for limit as $x to 0$. Hence can be extended by continuity on $[0,1]$ and is integrable on that interval.
$endgroup$
add a comment |
$begingroup$
You’re almost there... the map $h : x mapsto frac{sin x}{sqrt x}$ has $0$ for limit as $x to 0$. Hence can be extended by continuity on $[0,1]$ and is integrable on that interval.
$endgroup$
You’re almost there... the map $h : x mapsto frac{sin x}{sqrt x}$ has $0$ for limit as $x to 0$. Hence can be extended by continuity on $[0,1]$ and is integrable on that interval.
answered Dec 29 '18 at 20:21
mathcounterexamples.netmathcounterexamples.net
27k22158
27k22158
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056199%2fwhat-to-use-for-lim-n-to-infty-int-0-1-fracn-sinx1n2-sqrtxdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown