What to use for $lim_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dx$












3












$begingroup$


Determine $$lim_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dx$$



I know the three convergence theorems, but to no avail:



$1.$ Monotone Convergence:



The series $f_{n}(x):=frac{nsin{x}}{1+n^2sqrt{x}}$ is not monotonic increasing on $[0,1]$, so the conditions are not met.



$2.$ Fatou:



Note: $liminf_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dxgeqint_{[0,1]}liminf_{nto infty}frac{nsin{x}}{1+n^2sqrt{x}}dx=0$



Which aids us no further.



$3.$ Dominated Convergence Theorem:



The only function $h$ to fulfill $|f_{n}|leq h, forall n in mathbb N$ that comes to mind is $|frac{nsin{x}}{1+n^2sqrt{x}}|=frac{nsin{x}}{n^2sqrt{x}}=frac{sin{x}}{nsqrt{x}}leq frac{sin{x}}{sqrt{x}}=:h(x).$



But how do I show $h$ is $in mathcal{L}^1$?



Is there anything I am missing? Any guidance is greatly appreciated.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    Determine $$lim_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dx$$



    I know the three convergence theorems, but to no avail:



    $1.$ Monotone Convergence:



    The series $f_{n}(x):=frac{nsin{x}}{1+n^2sqrt{x}}$ is not monotonic increasing on $[0,1]$, so the conditions are not met.



    $2.$ Fatou:



    Note: $liminf_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dxgeqint_{[0,1]}liminf_{nto infty}frac{nsin{x}}{1+n^2sqrt{x}}dx=0$



    Which aids us no further.



    $3.$ Dominated Convergence Theorem:



    The only function $h$ to fulfill $|f_{n}|leq h, forall n in mathbb N$ that comes to mind is $|frac{nsin{x}}{1+n^2sqrt{x}}|=frac{nsin{x}}{n^2sqrt{x}}=frac{sin{x}}{nsqrt{x}}leq frac{sin{x}}{sqrt{x}}=:h(x).$



    But how do I show $h$ is $in mathcal{L}^1$?



    Is there anything I am missing? Any guidance is greatly appreciated.










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      0



      $begingroup$


      Determine $$lim_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dx$$



      I know the three convergence theorems, but to no avail:



      $1.$ Monotone Convergence:



      The series $f_{n}(x):=frac{nsin{x}}{1+n^2sqrt{x}}$ is not monotonic increasing on $[0,1]$, so the conditions are not met.



      $2.$ Fatou:



      Note: $liminf_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dxgeqint_{[0,1]}liminf_{nto infty}frac{nsin{x}}{1+n^2sqrt{x}}dx=0$



      Which aids us no further.



      $3.$ Dominated Convergence Theorem:



      The only function $h$ to fulfill $|f_{n}|leq h, forall n in mathbb N$ that comes to mind is $|frac{nsin{x}}{1+n^2sqrt{x}}|=frac{nsin{x}}{n^2sqrt{x}}=frac{sin{x}}{nsqrt{x}}leq frac{sin{x}}{sqrt{x}}=:h(x).$



      But how do I show $h$ is $in mathcal{L}^1$?



      Is there anything I am missing? Any guidance is greatly appreciated.










      share|cite|improve this question











      $endgroup$




      Determine $$lim_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dx$$



      I know the three convergence theorems, but to no avail:



      $1.$ Monotone Convergence:



      The series $f_{n}(x):=frac{nsin{x}}{1+n^2sqrt{x}}$ is not monotonic increasing on $[0,1]$, so the conditions are not met.



      $2.$ Fatou:



      Note: $liminf_{nto infty}int_{[0,1]}frac{nsin{x}}{1+n^2sqrt{x}}dxgeqint_{[0,1]}liminf_{nto infty}frac{nsin{x}}{1+n^2sqrt{x}}dx=0$



      Which aids us no further.



      $3.$ Dominated Convergence Theorem:



      The only function $h$ to fulfill $|f_{n}|leq h, forall n in mathbb N$ that comes to mind is $|frac{nsin{x}}{1+n^2sqrt{x}}|=frac{nsin{x}}{n^2sqrt{x}}=frac{sin{x}}{nsqrt{x}}leq frac{sin{x}}{sqrt{x}}=:h(x).$



      But how do I show $h$ is $in mathcal{L}^1$?



      Is there anything I am missing? Any guidance is greatly appreciated.







      real-analysis measure-theory convergence






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 29 '18 at 20:03









      Namaste

      1




      1










      asked Dec 29 '18 at 19:56









      SABOYSABOY

      668311




      668311






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Use dominated convergence with $h(x)=frac{sin(x)}{x}$ for $xin(0,1]$ and $h(0)=1$.






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            You’re almost there... the map $h : x mapsto frac{sin x}{sqrt x}$ has $0$ for limit as $x to 0$. Hence can be extended by continuity on $[0,1]$ and is integrable on that interval.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056199%2fwhat-to-use-for-lim-n-to-infty-int-0-1-fracn-sinx1n2-sqrtxdx%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              Use dominated convergence with $h(x)=frac{sin(x)}{x}$ for $xin(0,1]$ and $h(0)=1$.






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                Use dominated convergence with $h(x)=frac{sin(x)}{x}$ for $xin(0,1]$ and $h(0)=1$.






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Use dominated convergence with $h(x)=frac{sin(x)}{x}$ for $xin(0,1]$ and $h(0)=1$.






                  share|cite|improve this answer









                  $endgroup$



                  Use dominated convergence with $h(x)=frac{sin(x)}{x}$ for $xin(0,1]$ and $h(0)=1$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 29 '18 at 20:04









                  Ben WBen W

                  2,276615




                  2,276615























                      1












                      $begingroup$

                      You’re almost there... the map $h : x mapsto frac{sin x}{sqrt x}$ has $0$ for limit as $x to 0$. Hence can be extended by continuity on $[0,1]$ and is integrable on that interval.






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        You’re almost there... the map $h : x mapsto frac{sin x}{sqrt x}$ has $0$ for limit as $x to 0$. Hence can be extended by continuity on $[0,1]$ and is integrable on that interval.






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          You’re almost there... the map $h : x mapsto frac{sin x}{sqrt x}$ has $0$ for limit as $x to 0$. Hence can be extended by continuity on $[0,1]$ and is integrable on that interval.






                          share|cite|improve this answer









                          $endgroup$



                          You’re almost there... the map $h : x mapsto frac{sin x}{sqrt x}$ has $0$ for limit as $x to 0$. Hence can be extended by continuity on $[0,1]$ and is integrable on that interval.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 29 '18 at 20:21









                          mathcounterexamples.netmathcounterexamples.net

                          27k22158




                          27k22158






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056199%2fwhat-to-use-for-lim-n-to-infty-int-0-1-fracn-sinx1n2-sqrtxdx%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Wiesbaden

                              Marschland

                              Dieringhausen