Inequality for convex combination inner product












0














Let $mathcal{H}$ be a real Hilbert space and $a,b,c,d in mathcal{H}, t in (0,1)$ be such that
$$ leftlangle a - t cdot c , a - b rightrangle = (1-t) leftlangle b - t cdot d , a - b rightrangle + t leftlangle - t cdot d , a - b rightrangle neq 0 tag{1}label{1} . $$
Notice that if we set
$$ v := a-b, x:= b - t cdot d , y:= - t cdot d, z := a - t cdot c , $$
then we have
$$ leftlangle z , v rightrangle = (1-t) leftlangle x , v rightrangle + t leftlangle y , v rightrangle = leftlangle (1-t)x + ty , v rightrangle . $$
This reminds us about the convex combination
$$ z = (1-t)x + ty $$
in which we can get the following inequality
$$ leftlVert z rightrVert ^{2} leq (1-t) leftlVert x rightrVert ^{2} + t leftlVert y rightrVert ^{2} tag{2}label{2} . $$
The question is can we derive some similar inequality like eqref{2} for eqref{1}.
Otherwise, as a naive approach gives
begin{align*}
leftlVert a - t cdot c rightrVert ^{2} - leftlVert b - t cdot c rightrVert ^{2} & = (1-t) leftlVert b - t cdot d rightrVert ^{2} + t leftlVert - t cdot d rightrVert ^{2} - t (1-t) leftlVert b rightrVert ^{2} \
& qquad - leftlVert (2-t)b - t cdot d - a rightrVert ^{2} .
end{align*}

I would be happy to weaken the term $- leftlVert b - t cdot c rightrVert ^{2}$, that is to have $- delta leftlVert b - t cdot c rightrVert ^{2}$ for some $delta in (0,1)$.










share|cite|improve this question





























    0














    Let $mathcal{H}$ be a real Hilbert space and $a,b,c,d in mathcal{H}, t in (0,1)$ be such that
    $$ leftlangle a - t cdot c , a - b rightrangle = (1-t) leftlangle b - t cdot d , a - b rightrangle + t leftlangle - t cdot d , a - b rightrangle neq 0 tag{1}label{1} . $$
    Notice that if we set
    $$ v := a-b, x:= b - t cdot d , y:= - t cdot d, z := a - t cdot c , $$
    then we have
    $$ leftlangle z , v rightrangle = (1-t) leftlangle x , v rightrangle + t leftlangle y , v rightrangle = leftlangle (1-t)x + ty , v rightrangle . $$
    This reminds us about the convex combination
    $$ z = (1-t)x + ty $$
    in which we can get the following inequality
    $$ leftlVert z rightrVert ^{2} leq (1-t) leftlVert x rightrVert ^{2} + t leftlVert y rightrVert ^{2} tag{2}label{2} . $$
    The question is can we derive some similar inequality like eqref{2} for eqref{1}.
    Otherwise, as a naive approach gives
    begin{align*}
    leftlVert a - t cdot c rightrVert ^{2} - leftlVert b - t cdot c rightrVert ^{2} & = (1-t) leftlVert b - t cdot d rightrVert ^{2} + t leftlVert - t cdot d rightrVert ^{2} - t (1-t) leftlVert b rightrVert ^{2} \
    & qquad - leftlVert (2-t)b - t cdot d - a rightrVert ^{2} .
    end{align*}

    I would be happy to weaken the term $- leftlVert b - t cdot c rightrVert ^{2}$, that is to have $- delta leftlVert b - t cdot c rightrVert ^{2}$ for some $delta in (0,1)$.










    share|cite|improve this question



























      0












      0








      0







      Let $mathcal{H}$ be a real Hilbert space and $a,b,c,d in mathcal{H}, t in (0,1)$ be such that
      $$ leftlangle a - t cdot c , a - b rightrangle = (1-t) leftlangle b - t cdot d , a - b rightrangle + t leftlangle - t cdot d , a - b rightrangle neq 0 tag{1}label{1} . $$
      Notice that if we set
      $$ v := a-b, x:= b - t cdot d , y:= - t cdot d, z := a - t cdot c , $$
      then we have
      $$ leftlangle z , v rightrangle = (1-t) leftlangle x , v rightrangle + t leftlangle y , v rightrangle = leftlangle (1-t)x + ty , v rightrangle . $$
      This reminds us about the convex combination
      $$ z = (1-t)x + ty $$
      in which we can get the following inequality
      $$ leftlVert z rightrVert ^{2} leq (1-t) leftlVert x rightrVert ^{2} + t leftlVert y rightrVert ^{2} tag{2}label{2} . $$
      The question is can we derive some similar inequality like eqref{2} for eqref{1}.
      Otherwise, as a naive approach gives
      begin{align*}
      leftlVert a - t cdot c rightrVert ^{2} - leftlVert b - t cdot c rightrVert ^{2} & = (1-t) leftlVert b - t cdot d rightrVert ^{2} + t leftlVert - t cdot d rightrVert ^{2} - t (1-t) leftlVert b rightrVert ^{2} \
      & qquad - leftlVert (2-t)b - t cdot d - a rightrVert ^{2} .
      end{align*}

      I would be happy to weaken the term $- leftlVert b - t cdot c rightrVert ^{2}$, that is to have $- delta leftlVert b - t cdot c rightrVert ^{2}$ for some $delta in (0,1)$.










      share|cite|improve this question















      Let $mathcal{H}$ be a real Hilbert space and $a,b,c,d in mathcal{H}, t in (0,1)$ be such that
      $$ leftlangle a - t cdot c , a - b rightrangle = (1-t) leftlangle b - t cdot d , a - b rightrangle + t leftlangle - t cdot d , a - b rightrangle neq 0 tag{1}label{1} . $$
      Notice that if we set
      $$ v := a-b, x:= b - t cdot d , y:= - t cdot d, z := a - t cdot c , $$
      then we have
      $$ leftlangle z , v rightrangle = (1-t) leftlangle x , v rightrangle + t leftlangle y , v rightrangle = leftlangle (1-t)x + ty , v rightrangle . $$
      This reminds us about the convex combination
      $$ z = (1-t)x + ty $$
      in which we can get the following inequality
      $$ leftlVert z rightrVert ^{2} leq (1-t) leftlVert x rightrVert ^{2} + t leftlVert y rightrVert ^{2} tag{2}label{2} . $$
      The question is can we derive some similar inequality like eqref{2} for eqref{1}.
      Otherwise, as a naive approach gives
      begin{align*}
      leftlVert a - t cdot c rightrVert ^{2} - leftlVert b - t cdot c rightrVert ^{2} & = (1-t) leftlVert b - t cdot d rightrVert ^{2} + t leftlVert - t cdot d rightrVert ^{2} - t (1-t) leftlVert b rightrVert ^{2} \
      & qquad - leftlVert (2-t)b - t cdot d - a rightrVert ^{2} .
      end{align*}

      I would be happy to weaken the term $- leftlVert b - t cdot c rightrVert ^{2}$, that is to have $- delta leftlVert b - t cdot c rightrVert ^{2}$ for some $delta in (0,1)$.







      inequality hilbert-spaces inner-product-space






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 1 at 19:08









      Alex Ravsky

      38.7k32079




      38.7k32079










      asked Nov 29 at 23:11









      mortal

      397414




      397414






















          1 Answer
          1






          active

          oldest

          votes


















          2














          Unfortunately, in this imperfect world we not always can be happy.



          Simplifying each side in the last equality in your question we obtain



          $$langle a,arangle-2tlangle a,crangle+t^2langle c,crangle-[langle b,brangle-2tlangle b,crangle+t^2langle c,crangle]le$$ $$langle a,arangle+2(2-t) langle a,brangle-2t langle a,drangle+(2t-3) langle b,brangle+2tlangle b,drangle.$$



          As I understood you, it should be an inequality with some multiplier $delta$ before the square brackets, which is as small as possible. Then it is simplified to



          $$0le (4-2t) langle a,brangle+2tlangle a,crangle-2t langle a,drangle+(2t-3+delta) langle b,brangle-2tdeltalangle b,crangle+2tlangle b,drangle+t^2(delta-1)langle c,crangletag{3}label{3}$$



          On the other hand, (1) imply



          $$ langle a,arangle+(t-2)langle a,brangle- tlangle a,crangle+t langle a,drangle+(1-t) langle b,brangle+tlangle b,crangle-tlangle b,drangle=0. tag{4}label{4}$$



          Myltiplying (ref{4}) by two and adding to (ref{3}), we obtain



          $$0le 2langle a,arangle+(delta-1) langle b,brangle+2t(1-delta)langle b,crangle+t^2(delta-1)langle c,crangle=$$ $$2|a,a|+(delta-1)|b-tc|.tag{5}label{5}$$



          Now for any $delta<1$ we can easily find $a$, $b$, $c$, $d$, and $t$ satisfying (1), but violating (ref{5}). For the simplicity put $a=d=0$, $b=-cne 0$ and $t=1/2$.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019368%2finequality-for-convex-combination-inner-product%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            Unfortunately, in this imperfect world we not always can be happy.



            Simplifying each side in the last equality in your question we obtain



            $$langle a,arangle-2tlangle a,crangle+t^2langle c,crangle-[langle b,brangle-2tlangle b,crangle+t^2langle c,crangle]le$$ $$langle a,arangle+2(2-t) langle a,brangle-2t langle a,drangle+(2t-3) langle b,brangle+2tlangle b,drangle.$$



            As I understood you, it should be an inequality with some multiplier $delta$ before the square brackets, which is as small as possible. Then it is simplified to



            $$0le (4-2t) langle a,brangle+2tlangle a,crangle-2t langle a,drangle+(2t-3+delta) langle b,brangle-2tdeltalangle b,crangle+2tlangle b,drangle+t^2(delta-1)langle c,crangletag{3}label{3}$$



            On the other hand, (1) imply



            $$ langle a,arangle+(t-2)langle a,brangle- tlangle a,crangle+t langle a,drangle+(1-t) langle b,brangle+tlangle b,crangle-tlangle b,drangle=0. tag{4}label{4}$$



            Myltiplying (ref{4}) by two and adding to (ref{3}), we obtain



            $$0le 2langle a,arangle+(delta-1) langle b,brangle+2t(1-delta)langle b,crangle+t^2(delta-1)langle c,crangle=$$ $$2|a,a|+(delta-1)|b-tc|.tag{5}label{5}$$



            Now for any $delta<1$ we can easily find $a$, $b$, $c$, $d$, and $t$ satisfying (1), but violating (ref{5}). For the simplicity put $a=d=0$, $b=-cne 0$ and $t=1/2$.






            share|cite|improve this answer


























              2














              Unfortunately, in this imperfect world we not always can be happy.



              Simplifying each side in the last equality in your question we obtain



              $$langle a,arangle-2tlangle a,crangle+t^2langle c,crangle-[langle b,brangle-2tlangle b,crangle+t^2langle c,crangle]le$$ $$langle a,arangle+2(2-t) langle a,brangle-2t langle a,drangle+(2t-3) langle b,brangle+2tlangle b,drangle.$$



              As I understood you, it should be an inequality with some multiplier $delta$ before the square brackets, which is as small as possible. Then it is simplified to



              $$0le (4-2t) langle a,brangle+2tlangle a,crangle-2t langle a,drangle+(2t-3+delta) langle b,brangle-2tdeltalangle b,crangle+2tlangle b,drangle+t^2(delta-1)langle c,crangletag{3}label{3}$$



              On the other hand, (1) imply



              $$ langle a,arangle+(t-2)langle a,brangle- tlangle a,crangle+t langle a,drangle+(1-t) langle b,brangle+tlangle b,crangle-tlangle b,drangle=0. tag{4}label{4}$$



              Myltiplying (ref{4}) by two and adding to (ref{3}), we obtain



              $$0le 2langle a,arangle+(delta-1) langle b,brangle+2t(1-delta)langle b,crangle+t^2(delta-1)langle c,crangle=$$ $$2|a,a|+(delta-1)|b-tc|.tag{5}label{5}$$



              Now for any $delta<1$ we can easily find $a$, $b$, $c$, $d$, and $t$ satisfying (1), but violating (ref{5}). For the simplicity put $a=d=0$, $b=-cne 0$ and $t=1/2$.






              share|cite|improve this answer
























                2












                2








                2






                Unfortunately, in this imperfect world we not always can be happy.



                Simplifying each side in the last equality in your question we obtain



                $$langle a,arangle-2tlangle a,crangle+t^2langle c,crangle-[langle b,brangle-2tlangle b,crangle+t^2langle c,crangle]le$$ $$langle a,arangle+2(2-t) langle a,brangle-2t langle a,drangle+(2t-3) langle b,brangle+2tlangle b,drangle.$$



                As I understood you, it should be an inequality with some multiplier $delta$ before the square brackets, which is as small as possible. Then it is simplified to



                $$0le (4-2t) langle a,brangle+2tlangle a,crangle-2t langle a,drangle+(2t-3+delta) langle b,brangle-2tdeltalangle b,crangle+2tlangle b,drangle+t^2(delta-1)langle c,crangletag{3}label{3}$$



                On the other hand, (1) imply



                $$ langle a,arangle+(t-2)langle a,brangle- tlangle a,crangle+t langle a,drangle+(1-t) langle b,brangle+tlangle b,crangle-tlangle b,drangle=0. tag{4}label{4}$$



                Myltiplying (ref{4}) by two and adding to (ref{3}), we obtain



                $$0le 2langle a,arangle+(delta-1) langle b,brangle+2t(1-delta)langle b,crangle+t^2(delta-1)langle c,crangle=$$ $$2|a,a|+(delta-1)|b-tc|.tag{5}label{5}$$



                Now for any $delta<1$ we can easily find $a$, $b$, $c$, $d$, and $t$ satisfying (1), but violating (ref{5}). For the simplicity put $a=d=0$, $b=-cne 0$ and $t=1/2$.






                share|cite|improve this answer












                Unfortunately, in this imperfect world we not always can be happy.



                Simplifying each side in the last equality in your question we obtain



                $$langle a,arangle-2tlangle a,crangle+t^2langle c,crangle-[langle b,brangle-2tlangle b,crangle+t^2langle c,crangle]le$$ $$langle a,arangle+2(2-t) langle a,brangle-2t langle a,drangle+(2t-3) langle b,brangle+2tlangle b,drangle.$$



                As I understood you, it should be an inequality with some multiplier $delta$ before the square brackets, which is as small as possible. Then it is simplified to



                $$0le (4-2t) langle a,brangle+2tlangle a,crangle-2t langle a,drangle+(2t-3+delta) langle b,brangle-2tdeltalangle b,crangle+2tlangle b,drangle+t^2(delta-1)langle c,crangletag{3}label{3}$$



                On the other hand, (1) imply



                $$ langle a,arangle+(t-2)langle a,brangle- tlangle a,crangle+t langle a,drangle+(1-t) langle b,brangle+tlangle b,crangle-tlangle b,drangle=0. tag{4}label{4}$$



                Myltiplying (ref{4}) by two and adding to (ref{3}), we obtain



                $$0le 2langle a,arangle+(delta-1) langle b,brangle+2t(1-delta)langle b,crangle+t^2(delta-1)langle c,crangle=$$ $$2|a,a|+(delta-1)|b-tc|.tag{5}label{5}$$



                Now for any $delta<1$ we can easily find $a$, $b$, $c$, $d$, and $t$ satisfying (1), but violating (ref{5}). For the simplicity put $a=d=0$, $b=-cne 0$ and $t=1/2$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 1 at 19:07









                Alex Ravsky

                38.7k32079




                38.7k32079






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019368%2finequality-for-convex-combination-inner-product%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen