Inequality for convex combination inner product
Let $mathcal{H}$ be a real Hilbert space and $a,b,c,d in mathcal{H}, t in (0,1)$ be such that
$$ leftlangle a - t cdot c , a - b rightrangle = (1-t) leftlangle b - t cdot d , a - b rightrangle + t leftlangle - t cdot d , a - b rightrangle neq 0 tag{1}label{1} . $$
Notice that if we set
$$ v := a-b, x:= b - t cdot d , y:= - t cdot d, z := a - t cdot c , $$
then we have
$$ leftlangle z , v rightrangle = (1-t) leftlangle x , v rightrangle + t leftlangle y , v rightrangle = leftlangle (1-t)x + ty , v rightrangle . $$
This reminds us about the convex combination
$$ z = (1-t)x + ty $$
in which we can get the following inequality
$$ leftlVert z rightrVert ^{2} leq (1-t) leftlVert x rightrVert ^{2} + t leftlVert y rightrVert ^{2} tag{2}label{2} . $$
The question is can we derive some similar inequality like eqref{2} for eqref{1}.
Otherwise, as a naive approach gives
begin{align*}
leftlVert a - t cdot c rightrVert ^{2} - leftlVert b - t cdot c rightrVert ^{2} & = (1-t) leftlVert b - t cdot d rightrVert ^{2} + t leftlVert - t cdot d rightrVert ^{2} - t (1-t) leftlVert b rightrVert ^{2} \
& qquad - leftlVert (2-t)b - t cdot d - a rightrVert ^{2} .
end{align*}
I would be happy to weaken the term $- leftlVert b - t cdot c rightrVert ^{2}$, that is to have $- delta leftlVert b - t cdot c rightrVert ^{2}$ for some $delta in (0,1)$.
inequality hilbert-spaces inner-product-space
add a comment |
Let $mathcal{H}$ be a real Hilbert space and $a,b,c,d in mathcal{H}, t in (0,1)$ be such that
$$ leftlangle a - t cdot c , a - b rightrangle = (1-t) leftlangle b - t cdot d , a - b rightrangle + t leftlangle - t cdot d , a - b rightrangle neq 0 tag{1}label{1} . $$
Notice that if we set
$$ v := a-b, x:= b - t cdot d , y:= - t cdot d, z := a - t cdot c , $$
then we have
$$ leftlangle z , v rightrangle = (1-t) leftlangle x , v rightrangle + t leftlangle y , v rightrangle = leftlangle (1-t)x + ty , v rightrangle . $$
This reminds us about the convex combination
$$ z = (1-t)x + ty $$
in which we can get the following inequality
$$ leftlVert z rightrVert ^{2} leq (1-t) leftlVert x rightrVert ^{2} + t leftlVert y rightrVert ^{2} tag{2}label{2} . $$
The question is can we derive some similar inequality like eqref{2} for eqref{1}.
Otherwise, as a naive approach gives
begin{align*}
leftlVert a - t cdot c rightrVert ^{2} - leftlVert b - t cdot c rightrVert ^{2} & = (1-t) leftlVert b - t cdot d rightrVert ^{2} + t leftlVert - t cdot d rightrVert ^{2} - t (1-t) leftlVert b rightrVert ^{2} \
& qquad - leftlVert (2-t)b - t cdot d - a rightrVert ^{2} .
end{align*}
I would be happy to weaken the term $- leftlVert b - t cdot c rightrVert ^{2}$, that is to have $- delta leftlVert b - t cdot c rightrVert ^{2}$ for some $delta in (0,1)$.
inequality hilbert-spaces inner-product-space
add a comment |
Let $mathcal{H}$ be a real Hilbert space and $a,b,c,d in mathcal{H}, t in (0,1)$ be such that
$$ leftlangle a - t cdot c , a - b rightrangle = (1-t) leftlangle b - t cdot d , a - b rightrangle + t leftlangle - t cdot d , a - b rightrangle neq 0 tag{1}label{1} . $$
Notice that if we set
$$ v := a-b, x:= b - t cdot d , y:= - t cdot d, z := a - t cdot c , $$
then we have
$$ leftlangle z , v rightrangle = (1-t) leftlangle x , v rightrangle + t leftlangle y , v rightrangle = leftlangle (1-t)x + ty , v rightrangle . $$
This reminds us about the convex combination
$$ z = (1-t)x + ty $$
in which we can get the following inequality
$$ leftlVert z rightrVert ^{2} leq (1-t) leftlVert x rightrVert ^{2} + t leftlVert y rightrVert ^{2} tag{2}label{2} . $$
The question is can we derive some similar inequality like eqref{2} for eqref{1}.
Otherwise, as a naive approach gives
begin{align*}
leftlVert a - t cdot c rightrVert ^{2} - leftlVert b - t cdot c rightrVert ^{2} & = (1-t) leftlVert b - t cdot d rightrVert ^{2} + t leftlVert - t cdot d rightrVert ^{2} - t (1-t) leftlVert b rightrVert ^{2} \
& qquad - leftlVert (2-t)b - t cdot d - a rightrVert ^{2} .
end{align*}
I would be happy to weaken the term $- leftlVert b - t cdot c rightrVert ^{2}$, that is to have $- delta leftlVert b - t cdot c rightrVert ^{2}$ for some $delta in (0,1)$.
inequality hilbert-spaces inner-product-space
Let $mathcal{H}$ be a real Hilbert space and $a,b,c,d in mathcal{H}, t in (0,1)$ be such that
$$ leftlangle a - t cdot c , a - b rightrangle = (1-t) leftlangle b - t cdot d , a - b rightrangle + t leftlangle - t cdot d , a - b rightrangle neq 0 tag{1}label{1} . $$
Notice that if we set
$$ v := a-b, x:= b - t cdot d , y:= - t cdot d, z := a - t cdot c , $$
then we have
$$ leftlangle z , v rightrangle = (1-t) leftlangle x , v rightrangle + t leftlangle y , v rightrangle = leftlangle (1-t)x + ty , v rightrangle . $$
This reminds us about the convex combination
$$ z = (1-t)x + ty $$
in which we can get the following inequality
$$ leftlVert z rightrVert ^{2} leq (1-t) leftlVert x rightrVert ^{2} + t leftlVert y rightrVert ^{2} tag{2}label{2} . $$
The question is can we derive some similar inequality like eqref{2} for eqref{1}.
Otherwise, as a naive approach gives
begin{align*}
leftlVert a - t cdot c rightrVert ^{2} - leftlVert b - t cdot c rightrVert ^{2} & = (1-t) leftlVert b - t cdot d rightrVert ^{2} + t leftlVert - t cdot d rightrVert ^{2} - t (1-t) leftlVert b rightrVert ^{2} \
& qquad - leftlVert (2-t)b - t cdot d - a rightrVert ^{2} .
end{align*}
I would be happy to weaken the term $- leftlVert b - t cdot c rightrVert ^{2}$, that is to have $- delta leftlVert b - t cdot c rightrVert ^{2}$ for some $delta in (0,1)$.
inequality hilbert-spaces inner-product-space
inequality hilbert-spaces inner-product-space
edited Dec 1 at 19:08
Alex Ravsky
38.7k32079
38.7k32079
asked Nov 29 at 23:11
mortal
397414
397414
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Unfortunately, in this imperfect world we not always can be happy.
Simplifying each side in the last equality in your question we obtain
$$langle a,arangle-2tlangle a,crangle+t^2langle c,crangle-[langle b,brangle-2tlangle b,crangle+t^2langle c,crangle]le$$ $$langle a,arangle+2(2-t) langle a,brangle-2t langle a,drangle+(2t-3) langle b,brangle+2tlangle b,drangle.$$
As I understood you, it should be an inequality with some multiplier $delta$ before the square brackets, which is as small as possible. Then it is simplified to
$$0le (4-2t) langle a,brangle+2tlangle a,crangle-2t langle a,drangle+(2t-3+delta) langle b,brangle-2tdeltalangle b,crangle+2tlangle b,drangle+t^2(delta-1)langle c,crangletag{3}label{3}$$
On the other hand, (1) imply
$$ langle a,arangle+(t-2)langle a,brangle- tlangle a,crangle+t langle a,drangle+(1-t) langle b,brangle+tlangle b,crangle-tlangle b,drangle=0. tag{4}label{4}$$
Myltiplying (ref{4}) by two and adding to (ref{3}), we obtain
$$0le 2langle a,arangle+(delta-1) langle b,brangle+2t(1-delta)langle b,crangle+t^2(delta-1)langle c,crangle=$$ $$2|a,a|+(delta-1)|b-tc|.tag{5}label{5}$$
Now for any $delta<1$ we can easily find $a$, $b$, $c$, $d$, and $t$ satisfying (1), but violating (ref{5}). For the simplicity put $a=d=0$, $b=-cne 0$ and $t=1/2$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019368%2finequality-for-convex-combination-inner-product%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Unfortunately, in this imperfect world we not always can be happy.
Simplifying each side in the last equality in your question we obtain
$$langle a,arangle-2tlangle a,crangle+t^2langle c,crangle-[langle b,brangle-2tlangle b,crangle+t^2langle c,crangle]le$$ $$langle a,arangle+2(2-t) langle a,brangle-2t langle a,drangle+(2t-3) langle b,brangle+2tlangle b,drangle.$$
As I understood you, it should be an inequality with some multiplier $delta$ before the square brackets, which is as small as possible. Then it is simplified to
$$0le (4-2t) langle a,brangle+2tlangle a,crangle-2t langle a,drangle+(2t-3+delta) langle b,brangle-2tdeltalangle b,crangle+2tlangle b,drangle+t^2(delta-1)langle c,crangletag{3}label{3}$$
On the other hand, (1) imply
$$ langle a,arangle+(t-2)langle a,brangle- tlangle a,crangle+t langle a,drangle+(1-t) langle b,brangle+tlangle b,crangle-tlangle b,drangle=0. tag{4}label{4}$$
Myltiplying (ref{4}) by two and adding to (ref{3}), we obtain
$$0le 2langle a,arangle+(delta-1) langle b,brangle+2t(1-delta)langle b,crangle+t^2(delta-1)langle c,crangle=$$ $$2|a,a|+(delta-1)|b-tc|.tag{5}label{5}$$
Now for any $delta<1$ we can easily find $a$, $b$, $c$, $d$, and $t$ satisfying (1), but violating (ref{5}). For the simplicity put $a=d=0$, $b=-cne 0$ and $t=1/2$.
add a comment |
Unfortunately, in this imperfect world we not always can be happy.
Simplifying each side in the last equality in your question we obtain
$$langle a,arangle-2tlangle a,crangle+t^2langle c,crangle-[langle b,brangle-2tlangle b,crangle+t^2langle c,crangle]le$$ $$langle a,arangle+2(2-t) langle a,brangle-2t langle a,drangle+(2t-3) langle b,brangle+2tlangle b,drangle.$$
As I understood you, it should be an inequality with some multiplier $delta$ before the square brackets, which is as small as possible. Then it is simplified to
$$0le (4-2t) langle a,brangle+2tlangle a,crangle-2t langle a,drangle+(2t-3+delta) langle b,brangle-2tdeltalangle b,crangle+2tlangle b,drangle+t^2(delta-1)langle c,crangletag{3}label{3}$$
On the other hand, (1) imply
$$ langle a,arangle+(t-2)langle a,brangle- tlangle a,crangle+t langle a,drangle+(1-t) langle b,brangle+tlangle b,crangle-tlangle b,drangle=0. tag{4}label{4}$$
Myltiplying (ref{4}) by two and adding to (ref{3}), we obtain
$$0le 2langle a,arangle+(delta-1) langle b,brangle+2t(1-delta)langle b,crangle+t^2(delta-1)langle c,crangle=$$ $$2|a,a|+(delta-1)|b-tc|.tag{5}label{5}$$
Now for any $delta<1$ we can easily find $a$, $b$, $c$, $d$, and $t$ satisfying (1), but violating (ref{5}). For the simplicity put $a=d=0$, $b=-cne 0$ and $t=1/2$.
add a comment |
Unfortunately, in this imperfect world we not always can be happy.
Simplifying each side in the last equality in your question we obtain
$$langle a,arangle-2tlangle a,crangle+t^2langle c,crangle-[langle b,brangle-2tlangle b,crangle+t^2langle c,crangle]le$$ $$langle a,arangle+2(2-t) langle a,brangle-2t langle a,drangle+(2t-3) langle b,brangle+2tlangle b,drangle.$$
As I understood you, it should be an inequality with some multiplier $delta$ before the square brackets, which is as small as possible. Then it is simplified to
$$0le (4-2t) langle a,brangle+2tlangle a,crangle-2t langle a,drangle+(2t-3+delta) langle b,brangle-2tdeltalangle b,crangle+2tlangle b,drangle+t^2(delta-1)langle c,crangletag{3}label{3}$$
On the other hand, (1) imply
$$ langle a,arangle+(t-2)langle a,brangle- tlangle a,crangle+t langle a,drangle+(1-t) langle b,brangle+tlangle b,crangle-tlangle b,drangle=0. tag{4}label{4}$$
Myltiplying (ref{4}) by two and adding to (ref{3}), we obtain
$$0le 2langle a,arangle+(delta-1) langle b,brangle+2t(1-delta)langle b,crangle+t^2(delta-1)langle c,crangle=$$ $$2|a,a|+(delta-1)|b-tc|.tag{5}label{5}$$
Now for any $delta<1$ we can easily find $a$, $b$, $c$, $d$, and $t$ satisfying (1), but violating (ref{5}). For the simplicity put $a=d=0$, $b=-cne 0$ and $t=1/2$.
Unfortunately, in this imperfect world we not always can be happy.
Simplifying each side in the last equality in your question we obtain
$$langle a,arangle-2tlangle a,crangle+t^2langle c,crangle-[langle b,brangle-2tlangle b,crangle+t^2langle c,crangle]le$$ $$langle a,arangle+2(2-t) langle a,brangle-2t langle a,drangle+(2t-3) langle b,brangle+2tlangle b,drangle.$$
As I understood you, it should be an inequality with some multiplier $delta$ before the square brackets, which is as small as possible. Then it is simplified to
$$0le (4-2t) langle a,brangle+2tlangle a,crangle-2t langle a,drangle+(2t-3+delta) langle b,brangle-2tdeltalangle b,crangle+2tlangle b,drangle+t^2(delta-1)langle c,crangletag{3}label{3}$$
On the other hand, (1) imply
$$ langle a,arangle+(t-2)langle a,brangle- tlangle a,crangle+t langle a,drangle+(1-t) langle b,brangle+tlangle b,crangle-tlangle b,drangle=0. tag{4}label{4}$$
Myltiplying (ref{4}) by two and adding to (ref{3}), we obtain
$$0le 2langle a,arangle+(delta-1) langle b,brangle+2t(1-delta)langle b,crangle+t^2(delta-1)langle c,crangle=$$ $$2|a,a|+(delta-1)|b-tc|.tag{5}label{5}$$
Now for any $delta<1$ we can easily find $a$, $b$, $c$, $d$, and $t$ satisfying (1), but violating (ref{5}). For the simplicity put $a=d=0$, $b=-cne 0$ and $t=1/2$.
answered Dec 1 at 19:07
Alex Ravsky
38.7k32079
38.7k32079
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019368%2finequality-for-convex-combination-inner-product%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown