Determine for what real values of x the matrix A is positive semidefinite.
Given the matrix $$A=begin{bmatrix} 1 & (x+1) & 1 \
(x+1) & 1 & (x+1)\
1 & (x+1) & 1
end{bmatrix}$$
Determine for what real values of x the matrix A is positive semidefinite.
So, I tried to find the eigenvalues of A and got the expression $$lambda (-lambda^2+3lambda+(2x^2+4x))=0 Rightarrow lambda=0 textrm{or} -lambda^2+3lambda+(2x^2+4x)=0$$
In the last equation I have $lambda=frac{3pmsqrt{8x^2+16x+9}}{2}$
Q: This is the best answer I can find as a function of $xinmathbb{R}$? How to write the range where $lambdageq0$?
linear-algebra matrices eigenvalues-eigenvectors
add a comment |
Given the matrix $$A=begin{bmatrix} 1 & (x+1) & 1 \
(x+1) & 1 & (x+1)\
1 & (x+1) & 1
end{bmatrix}$$
Determine for what real values of x the matrix A is positive semidefinite.
So, I tried to find the eigenvalues of A and got the expression $$lambda (-lambda^2+3lambda+(2x^2+4x))=0 Rightarrow lambda=0 textrm{or} -lambda^2+3lambda+(2x^2+4x)=0$$
In the last equation I have $lambda=frac{3pmsqrt{8x^2+16x+9}}{2}$
Q: This is the best answer I can find as a function of $xinmathbb{R}$? How to write the range where $lambdageq0$?
linear-algebra matrices eigenvalues-eigenvectors
add a comment |
Given the matrix $$A=begin{bmatrix} 1 & (x+1) & 1 \
(x+1) & 1 & (x+1)\
1 & (x+1) & 1
end{bmatrix}$$
Determine for what real values of x the matrix A is positive semidefinite.
So, I tried to find the eigenvalues of A and got the expression $$lambda (-lambda^2+3lambda+(2x^2+4x))=0 Rightarrow lambda=0 textrm{or} -lambda^2+3lambda+(2x^2+4x)=0$$
In the last equation I have $lambda=frac{3pmsqrt{8x^2+16x+9}}{2}$
Q: This is the best answer I can find as a function of $xinmathbb{R}$? How to write the range where $lambdageq0$?
linear-algebra matrices eigenvalues-eigenvectors
Given the matrix $$A=begin{bmatrix} 1 & (x+1) & 1 \
(x+1) & 1 & (x+1)\
1 & (x+1) & 1
end{bmatrix}$$
Determine for what real values of x the matrix A is positive semidefinite.
So, I tried to find the eigenvalues of A and got the expression $$lambda (-lambda^2+3lambda+(2x^2+4x))=0 Rightarrow lambda=0 textrm{or} -lambda^2+3lambda+(2x^2+4x)=0$$
In the last equation I have $lambda=frac{3pmsqrt{8x^2+16x+9}}{2}$
Q: This is the best answer I can find as a function of $xinmathbb{R}$? How to write the range where $lambdageq0$?
linear-algebra matrices eigenvalues-eigenvectors
linear-algebra matrices eigenvalues-eigenvectors
edited Dec 2 '18 at 13:57
asked Dec 2 '18 at 13:49
Juliana de Souza
656
656
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
We have
- $det(1)=1$
- $detbegin{bmatrix} 1 & (x+1) \
(x+1) & 1 end{bmatrix}=1-(x+1)^2$ - $det A=0$
then by Sylvester criterion we need
$$1-(x+1)^2 > 0 iff x(x+2)<0 quad -2<x<0$$
and by direct inspection we see that $A$ is positive semidefinite also for $x=0,-2$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022661%2fdetermine-for-what-real-values-of-x-the-matrix-a-is-positive-semidefinite%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
We have
- $det(1)=1$
- $detbegin{bmatrix} 1 & (x+1) \
(x+1) & 1 end{bmatrix}=1-(x+1)^2$ - $det A=0$
then by Sylvester criterion we need
$$1-(x+1)^2 > 0 iff x(x+2)<0 quad -2<x<0$$
and by direct inspection we see that $A$ is positive semidefinite also for $x=0,-2$.
add a comment |
We have
- $det(1)=1$
- $detbegin{bmatrix} 1 & (x+1) \
(x+1) & 1 end{bmatrix}=1-(x+1)^2$ - $det A=0$
then by Sylvester criterion we need
$$1-(x+1)^2 > 0 iff x(x+2)<0 quad -2<x<0$$
and by direct inspection we see that $A$ is positive semidefinite also for $x=0,-2$.
add a comment |
We have
- $det(1)=1$
- $detbegin{bmatrix} 1 & (x+1) \
(x+1) & 1 end{bmatrix}=1-(x+1)^2$ - $det A=0$
then by Sylvester criterion we need
$$1-(x+1)^2 > 0 iff x(x+2)<0 quad -2<x<0$$
and by direct inspection we see that $A$ is positive semidefinite also for $x=0,-2$.
We have
- $det(1)=1$
- $detbegin{bmatrix} 1 & (x+1) \
(x+1) & 1 end{bmatrix}=1-(x+1)^2$ - $det A=0$
then by Sylvester criterion we need
$$1-(x+1)^2 > 0 iff x(x+2)<0 quad -2<x<0$$
and by direct inspection we see that $A$ is positive semidefinite also for $x=0,-2$.
edited Dec 2 '18 at 14:24
answered Dec 2 '18 at 13:55
gimusi
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022661%2fdetermine-for-what-real-values-of-x-the-matrix-a-is-positive-semidefinite%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown