On the variance in the Bernoulli scheme












1














I'm trying to solve the following problem.



There are $755$ cards, each of which has a number from $1$ to $755$ (each number occurs exactly once). Of these cards, $20$ pieces are randomly selected and a random value equal to the sum of the numbers written on all $20$ cards is considered. I want to find the variance of this random value.



I think in this problem there is a Bernoulli scheme in which the space of elementary events is a set of numbers from $1$ to $755$. But are there ways to calculate the parameters of such a distribution (e.g. variance)?










share|cite|improve this question



























    1














    I'm trying to solve the following problem.



    There are $755$ cards, each of which has a number from $1$ to $755$ (each number occurs exactly once). Of these cards, $20$ pieces are randomly selected and a random value equal to the sum of the numbers written on all $20$ cards is considered. I want to find the variance of this random value.



    I think in this problem there is a Bernoulli scheme in which the space of elementary events is a set of numbers from $1$ to $755$. But are there ways to calculate the parameters of such a distribution (e.g. variance)?










    share|cite|improve this question

























      1












      1








      1







      I'm trying to solve the following problem.



      There are $755$ cards, each of which has a number from $1$ to $755$ (each number occurs exactly once). Of these cards, $20$ pieces are randomly selected and a random value equal to the sum of the numbers written on all $20$ cards is considered. I want to find the variance of this random value.



      I think in this problem there is a Bernoulli scheme in which the space of elementary events is a set of numbers from $1$ to $755$. But are there ways to calculate the parameters of such a distribution (e.g. variance)?










      share|cite|improve this question













      I'm trying to solve the following problem.



      There are $755$ cards, each of which has a number from $1$ to $755$ (each number occurs exactly once). Of these cards, $20$ pieces are randomly selected and a random value equal to the sum of the numbers written on all $20$ cards is considered. I want to find the variance of this random value.



      I think in this problem there is a Bernoulli scheme in which the space of elementary events is a set of numbers from $1$ to $755$. But are there ways to calculate the parameters of such a distribution (e.g. variance)?







      probability probability-theory probability-distributions variance






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 2 '18 at 13:04









      Victor

      1766




      1766






















          1 Answer
          1






          active

          oldest

          votes


















          0














          With $n$ the number of cards and $k$ the number drawn we have the
          OGF



          $$[u^k] prod_{q=1}^n (1+ux^q).$$



          Differentiate once for the expectation



          $$[u^k] prod_{q=1}^n (1+ux^q)
          sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}$$



          and set $x=1$:



          $$[u^k] prod_{q=1}^n (1+u)
          sum_{q=1}^n frac{q u}{1+u}
          = [u^k] (1+u)^{n-1} u frac{1}{2} n (n+1)
          \ = frac{1}{2} n (n+1) {n-1choose k-1}.$$



          This gives for the expectation



          $$frac{1}{2} n (n+1) {n-1choose k-1} {nchoose k}^{-1}
          = frac{1}{2} n (n+1) {n-1choose k-1}
          frac{k}{n} {n-1choose k-1}^{-1}$$



          or



          $$bbox[5px,border:2px solid #00A000]{
          mathrm{E}[X] = frac{1}{2} k (n+1).}$$



          Differentiate again for the next factorial moment



          $$[u^k] prod_{q=1}^n (1+ux^q)
          left(sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}right)^2
          \ + [u^k] prod_{q=1}^n (1+ux^q)
          sum_{q=1}^n frac{q (q-1) u x^{q-2}}{1+ux^q}
          - [u^k] prod_{q=1}^n (1+ux^q)
          sum_{q=1}^n frac{q u x^{q-1}}{(1+ux^q)^2} q u x^{q-1}$$



          and once more set $x=1$:



          $$[u^k] (1+u)^n
          left(sum_{q=1}^n frac{q u}{1+u}right)^2
          \ + [u^k] (1+u)^n
          sum_{q=1}^n frac{q (q-1) u}{1+u}
          - [u^k] (1+u)^n
          sum_{q=1}^n frac{q u}{(1+u)^2} q u
          \ = {n-2choose k-2} frac{1}{4} n^2 (n+1)^2
          \ + {n-1choose k-1} frac{1}{3} (n-1) n (n+1)
          - {n-2choose k-2} frac{1}{6} n (n+1) (2n+1).$$



          This gives for the second factorial moment



          $$ frac{k(k-1)}{n(n-1)} frac{1}{4} n^2 (n+1)^2
          \ + frac{k}{n} frac{1}{3} (n-1) n (n+1)
          - frac{k(k-1)}{n(n-1)} frac{1}{6} n (n+1) (2n+1)
          \ = frac{k(k-1)}{n-1} frac{1}{4} n (n+1)^2
          + k frac{1}{3} (n-1) (n+1)
          - frac{k(k-1)}{n-1} frac{1}{6} (n+1) (2n+1).$$



          or



          $$bbox[5px,border:2px solid #00A000]{
          mathrm{E}[X(X-1)] = frac{1}{12} k (n+1)
          (3 k n + 2 k + n - 6).}$$



          Finally recall that



          $$mathrm{Var}[X] =
          mathrm{E}[X(X-1)] + mathrm{E}[X] - mathrm{E}[X]^2$$



          so that



          $$bbox[5px,border:2px solid #00A000]{
          mathrm{Var}[X] = frac{1}{12} k (n+1) (n-k).}$$






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022615%2fon-the-variance-in-the-bernoulli-scheme%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            With $n$ the number of cards and $k$ the number drawn we have the
            OGF



            $$[u^k] prod_{q=1}^n (1+ux^q).$$



            Differentiate once for the expectation



            $$[u^k] prod_{q=1}^n (1+ux^q)
            sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}$$



            and set $x=1$:



            $$[u^k] prod_{q=1}^n (1+u)
            sum_{q=1}^n frac{q u}{1+u}
            = [u^k] (1+u)^{n-1} u frac{1}{2} n (n+1)
            \ = frac{1}{2} n (n+1) {n-1choose k-1}.$$



            This gives for the expectation



            $$frac{1}{2} n (n+1) {n-1choose k-1} {nchoose k}^{-1}
            = frac{1}{2} n (n+1) {n-1choose k-1}
            frac{k}{n} {n-1choose k-1}^{-1}$$



            or



            $$bbox[5px,border:2px solid #00A000]{
            mathrm{E}[X] = frac{1}{2} k (n+1).}$$



            Differentiate again for the next factorial moment



            $$[u^k] prod_{q=1}^n (1+ux^q)
            left(sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}right)^2
            \ + [u^k] prod_{q=1}^n (1+ux^q)
            sum_{q=1}^n frac{q (q-1) u x^{q-2}}{1+ux^q}
            - [u^k] prod_{q=1}^n (1+ux^q)
            sum_{q=1}^n frac{q u x^{q-1}}{(1+ux^q)^2} q u x^{q-1}$$



            and once more set $x=1$:



            $$[u^k] (1+u)^n
            left(sum_{q=1}^n frac{q u}{1+u}right)^2
            \ + [u^k] (1+u)^n
            sum_{q=1}^n frac{q (q-1) u}{1+u}
            - [u^k] (1+u)^n
            sum_{q=1}^n frac{q u}{(1+u)^2} q u
            \ = {n-2choose k-2} frac{1}{4} n^2 (n+1)^2
            \ + {n-1choose k-1} frac{1}{3} (n-1) n (n+1)
            - {n-2choose k-2} frac{1}{6} n (n+1) (2n+1).$$



            This gives for the second factorial moment



            $$ frac{k(k-1)}{n(n-1)} frac{1}{4} n^2 (n+1)^2
            \ + frac{k}{n} frac{1}{3} (n-1) n (n+1)
            - frac{k(k-1)}{n(n-1)} frac{1}{6} n (n+1) (2n+1)
            \ = frac{k(k-1)}{n-1} frac{1}{4} n (n+1)^2
            + k frac{1}{3} (n-1) (n+1)
            - frac{k(k-1)}{n-1} frac{1}{6} (n+1) (2n+1).$$



            or



            $$bbox[5px,border:2px solid #00A000]{
            mathrm{E}[X(X-1)] = frac{1}{12} k (n+1)
            (3 k n + 2 k + n - 6).}$$



            Finally recall that



            $$mathrm{Var}[X] =
            mathrm{E}[X(X-1)] + mathrm{E}[X] - mathrm{E}[X]^2$$



            so that



            $$bbox[5px,border:2px solid #00A000]{
            mathrm{Var}[X] = frac{1}{12} k (n+1) (n-k).}$$






            share|cite|improve this answer




























              0














              With $n$ the number of cards and $k$ the number drawn we have the
              OGF



              $$[u^k] prod_{q=1}^n (1+ux^q).$$



              Differentiate once for the expectation



              $$[u^k] prod_{q=1}^n (1+ux^q)
              sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}$$



              and set $x=1$:



              $$[u^k] prod_{q=1}^n (1+u)
              sum_{q=1}^n frac{q u}{1+u}
              = [u^k] (1+u)^{n-1} u frac{1}{2} n (n+1)
              \ = frac{1}{2} n (n+1) {n-1choose k-1}.$$



              This gives for the expectation



              $$frac{1}{2} n (n+1) {n-1choose k-1} {nchoose k}^{-1}
              = frac{1}{2} n (n+1) {n-1choose k-1}
              frac{k}{n} {n-1choose k-1}^{-1}$$



              or



              $$bbox[5px,border:2px solid #00A000]{
              mathrm{E}[X] = frac{1}{2} k (n+1).}$$



              Differentiate again for the next factorial moment



              $$[u^k] prod_{q=1}^n (1+ux^q)
              left(sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}right)^2
              \ + [u^k] prod_{q=1}^n (1+ux^q)
              sum_{q=1}^n frac{q (q-1) u x^{q-2}}{1+ux^q}
              - [u^k] prod_{q=1}^n (1+ux^q)
              sum_{q=1}^n frac{q u x^{q-1}}{(1+ux^q)^2} q u x^{q-1}$$



              and once more set $x=1$:



              $$[u^k] (1+u)^n
              left(sum_{q=1}^n frac{q u}{1+u}right)^2
              \ + [u^k] (1+u)^n
              sum_{q=1}^n frac{q (q-1) u}{1+u}
              - [u^k] (1+u)^n
              sum_{q=1}^n frac{q u}{(1+u)^2} q u
              \ = {n-2choose k-2} frac{1}{4} n^2 (n+1)^2
              \ + {n-1choose k-1} frac{1}{3} (n-1) n (n+1)
              - {n-2choose k-2} frac{1}{6} n (n+1) (2n+1).$$



              This gives for the second factorial moment



              $$ frac{k(k-1)}{n(n-1)} frac{1}{4} n^2 (n+1)^2
              \ + frac{k}{n} frac{1}{3} (n-1) n (n+1)
              - frac{k(k-1)}{n(n-1)} frac{1}{6} n (n+1) (2n+1)
              \ = frac{k(k-1)}{n-1} frac{1}{4} n (n+1)^2
              + k frac{1}{3} (n-1) (n+1)
              - frac{k(k-1)}{n-1} frac{1}{6} (n+1) (2n+1).$$



              or



              $$bbox[5px,border:2px solid #00A000]{
              mathrm{E}[X(X-1)] = frac{1}{12} k (n+1)
              (3 k n + 2 k + n - 6).}$$



              Finally recall that



              $$mathrm{Var}[X] =
              mathrm{E}[X(X-1)] + mathrm{E}[X] - mathrm{E}[X]^2$$



              so that



              $$bbox[5px,border:2px solid #00A000]{
              mathrm{Var}[X] = frac{1}{12} k (n+1) (n-k).}$$






              share|cite|improve this answer


























                0












                0








                0






                With $n$ the number of cards and $k$ the number drawn we have the
                OGF



                $$[u^k] prod_{q=1}^n (1+ux^q).$$



                Differentiate once for the expectation



                $$[u^k] prod_{q=1}^n (1+ux^q)
                sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}$$



                and set $x=1$:



                $$[u^k] prod_{q=1}^n (1+u)
                sum_{q=1}^n frac{q u}{1+u}
                = [u^k] (1+u)^{n-1} u frac{1}{2} n (n+1)
                \ = frac{1}{2} n (n+1) {n-1choose k-1}.$$



                This gives for the expectation



                $$frac{1}{2} n (n+1) {n-1choose k-1} {nchoose k}^{-1}
                = frac{1}{2} n (n+1) {n-1choose k-1}
                frac{k}{n} {n-1choose k-1}^{-1}$$



                or



                $$bbox[5px,border:2px solid #00A000]{
                mathrm{E}[X] = frac{1}{2} k (n+1).}$$



                Differentiate again for the next factorial moment



                $$[u^k] prod_{q=1}^n (1+ux^q)
                left(sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}right)^2
                \ + [u^k] prod_{q=1}^n (1+ux^q)
                sum_{q=1}^n frac{q (q-1) u x^{q-2}}{1+ux^q}
                - [u^k] prod_{q=1}^n (1+ux^q)
                sum_{q=1}^n frac{q u x^{q-1}}{(1+ux^q)^2} q u x^{q-1}$$



                and once more set $x=1$:



                $$[u^k] (1+u)^n
                left(sum_{q=1}^n frac{q u}{1+u}right)^2
                \ + [u^k] (1+u)^n
                sum_{q=1}^n frac{q (q-1) u}{1+u}
                - [u^k] (1+u)^n
                sum_{q=1}^n frac{q u}{(1+u)^2} q u
                \ = {n-2choose k-2} frac{1}{4} n^2 (n+1)^2
                \ + {n-1choose k-1} frac{1}{3} (n-1) n (n+1)
                - {n-2choose k-2} frac{1}{6} n (n+1) (2n+1).$$



                This gives for the second factorial moment



                $$ frac{k(k-1)}{n(n-1)} frac{1}{4} n^2 (n+1)^2
                \ + frac{k}{n} frac{1}{3} (n-1) n (n+1)
                - frac{k(k-1)}{n(n-1)} frac{1}{6} n (n+1) (2n+1)
                \ = frac{k(k-1)}{n-1} frac{1}{4} n (n+1)^2
                + k frac{1}{3} (n-1) (n+1)
                - frac{k(k-1)}{n-1} frac{1}{6} (n+1) (2n+1).$$



                or



                $$bbox[5px,border:2px solid #00A000]{
                mathrm{E}[X(X-1)] = frac{1}{12} k (n+1)
                (3 k n + 2 k + n - 6).}$$



                Finally recall that



                $$mathrm{Var}[X] =
                mathrm{E}[X(X-1)] + mathrm{E}[X] - mathrm{E}[X]^2$$



                so that



                $$bbox[5px,border:2px solid #00A000]{
                mathrm{Var}[X] = frac{1}{12} k (n+1) (n-k).}$$






                share|cite|improve this answer














                With $n$ the number of cards and $k$ the number drawn we have the
                OGF



                $$[u^k] prod_{q=1}^n (1+ux^q).$$



                Differentiate once for the expectation



                $$[u^k] prod_{q=1}^n (1+ux^q)
                sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}$$



                and set $x=1$:



                $$[u^k] prod_{q=1}^n (1+u)
                sum_{q=1}^n frac{q u}{1+u}
                = [u^k] (1+u)^{n-1} u frac{1}{2} n (n+1)
                \ = frac{1}{2} n (n+1) {n-1choose k-1}.$$



                This gives for the expectation



                $$frac{1}{2} n (n+1) {n-1choose k-1} {nchoose k}^{-1}
                = frac{1}{2} n (n+1) {n-1choose k-1}
                frac{k}{n} {n-1choose k-1}^{-1}$$



                or



                $$bbox[5px,border:2px solid #00A000]{
                mathrm{E}[X] = frac{1}{2} k (n+1).}$$



                Differentiate again for the next factorial moment



                $$[u^k] prod_{q=1}^n (1+ux^q)
                left(sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}right)^2
                \ + [u^k] prod_{q=1}^n (1+ux^q)
                sum_{q=1}^n frac{q (q-1) u x^{q-2}}{1+ux^q}
                - [u^k] prod_{q=1}^n (1+ux^q)
                sum_{q=1}^n frac{q u x^{q-1}}{(1+ux^q)^2} q u x^{q-1}$$



                and once more set $x=1$:



                $$[u^k] (1+u)^n
                left(sum_{q=1}^n frac{q u}{1+u}right)^2
                \ + [u^k] (1+u)^n
                sum_{q=1}^n frac{q (q-1) u}{1+u}
                - [u^k] (1+u)^n
                sum_{q=1}^n frac{q u}{(1+u)^2} q u
                \ = {n-2choose k-2} frac{1}{4} n^2 (n+1)^2
                \ + {n-1choose k-1} frac{1}{3} (n-1) n (n+1)
                - {n-2choose k-2} frac{1}{6} n (n+1) (2n+1).$$



                This gives for the second factorial moment



                $$ frac{k(k-1)}{n(n-1)} frac{1}{4} n^2 (n+1)^2
                \ + frac{k}{n} frac{1}{3} (n-1) n (n+1)
                - frac{k(k-1)}{n(n-1)} frac{1}{6} n (n+1) (2n+1)
                \ = frac{k(k-1)}{n-1} frac{1}{4} n (n+1)^2
                + k frac{1}{3} (n-1) (n+1)
                - frac{k(k-1)}{n-1} frac{1}{6} (n+1) (2n+1).$$



                or



                $$bbox[5px,border:2px solid #00A000]{
                mathrm{E}[X(X-1)] = frac{1}{12} k (n+1)
                (3 k n + 2 k + n - 6).}$$



                Finally recall that



                $$mathrm{Var}[X] =
                mathrm{E}[X(X-1)] + mathrm{E}[X] - mathrm{E}[X]^2$$



                so that



                $$bbox[5px,border:2px solid #00A000]{
                mathrm{Var}[X] = frac{1}{12} k (n+1) (n-k).}$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 3 '18 at 15:42

























                answered Dec 3 '18 at 15:34









                Marko Riedel

                39.2k339107




                39.2k339107






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022615%2fon-the-variance-in-the-bernoulli-scheme%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen