On the variance in the Bernoulli scheme
I'm trying to solve the following problem.
There are $755$ cards, each of which has a number from $1$ to $755$ (each number occurs exactly once). Of these cards, $20$ pieces are randomly selected and a random value equal to the sum of the numbers written on all $20$ cards is considered. I want to find the variance of this random value.
I think in this problem there is a Bernoulli scheme in which the space of elementary events is a set of numbers from $1$ to $755$. But are there ways to calculate the parameters of such a distribution (e.g. variance)?
probability probability-theory probability-distributions variance
add a comment |
I'm trying to solve the following problem.
There are $755$ cards, each of which has a number from $1$ to $755$ (each number occurs exactly once). Of these cards, $20$ pieces are randomly selected and a random value equal to the sum of the numbers written on all $20$ cards is considered. I want to find the variance of this random value.
I think in this problem there is a Bernoulli scheme in which the space of elementary events is a set of numbers from $1$ to $755$. But are there ways to calculate the parameters of such a distribution (e.g. variance)?
probability probability-theory probability-distributions variance
add a comment |
I'm trying to solve the following problem.
There are $755$ cards, each of which has a number from $1$ to $755$ (each number occurs exactly once). Of these cards, $20$ pieces are randomly selected and a random value equal to the sum of the numbers written on all $20$ cards is considered. I want to find the variance of this random value.
I think in this problem there is a Bernoulli scheme in which the space of elementary events is a set of numbers from $1$ to $755$. But are there ways to calculate the parameters of such a distribution (e.g. variance)?
probability probability-theory probability-distributions variance
I'm trying to solve the following problem.
There are $755$ cards, each of which has a number from $1$ to $755$ (each number occurs exactly once). Of these cards, $20$ pieces are randomly selected and a random value equal to the sum of the numbers written on all $20$ cards is considered. I want to find the variance of this random value.
I think in this problem there is a Bernoulli scheme in which the space of elementary events is a set of numbers from $1$ to $755$. But are there ways to calculate the parameters of such a distribution (e.g. variance)?
probability probability-theory probability-distributions variance
probability probability-theory probability-distributions variance
asked Dec 2 '18 at 13:04
Victor
1766
1766
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
With $n$ the number of cards and $k$ the number drawn we have the
OGF
$$[u^k] prod_{q=1}^n (1+ux^q).$$
Differentiate once for the expectation
$$[u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}$$
and set $x=1$:
$$[u^k] prod_{q=1}^n (1+u)
sum_{q=1}^n frac{q u}{1+u}
= [u^k] (1+u)^{n-1} u frac{1}{2} n (n+1)
\ = frac{1}{2} n (n+1) {n-1choose k-1}.$$
This gives for the expectation
$$frac{1}{2} n (n+1) {n-1choose k-1} {nchoose k}^{-1}
= frac{1}{2} n (n+1) {n-1choose k-1}
frac{k}{n} {n-1choose k-1}^{-1}$$
or
$$bbox[5px,border:2px solid #00A000]{
mathrm{E}[X] = frac{1}{2} k (n+1).}$$
Differentiate again for the next factorial moment
$$[u^k] prod_{q=1}^n (1+ux^q)
left(sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}right)^2
\ + [u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q (q-1) u x^{q-2}}{1+ux^q}
- [u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q u x^{q-1}}{(1+ux^q)^2} q u x^{q-1}$$
and once more set $x=1$:
$$[u^k] (1+u)^n
left(sum_{q=1}^n frac{q u}{1+u}right)^2
\ + [u^k] (1+u)^n
sum_{q=1}^n frac{q (q-1) u}{1+u}
- [u^k] (1+u)^n
sum_{q=1}^n frac{q u}{(1+u)^2} q u
\ = {n-2choose k-2} frac{1}{4} n^2 (n+1)^2
\ + {n-1choose k-1} frac{1}{3} (n-1) n (n+1)
- {n-2choose k-2} frac{1}{6} n (n+1) (2n+1).$$
This gives for the second factorial moment
$$ frac{k(k-1)}{n(n-1)} frac{1}{4} n^2 (n+1)^2
\ + frac{k}{n} frac{1}{3} (n-1) n (n+1)
- frac{k(k-1)}{n(n-1)} frac{1}{6} n (n+1) (2n+1)
\ = frac{k(k-1)}{n-1} frac{1}{4} n (n+1)^2
+ k frac{1}{3} (n-1) (n+1)
- frac{k(k-1)}{n-1} frac{1}{6} (n+1) (2n+1).$$
or
$$bbox[5px,border:2px solid #00A000]{
mathrm{E}[X(X-1)] = frac{1}{12} k (n+1)
(3 k n + 2 k + n - 6).}$$
Finally recall that
$$mathrm{Var}[X] =
mathrm{E}[X(X-1)] + mathrm{E}[X] - mathrm{E}[X]^2$$
so that
$$bbox[5px,border:2px solid #00A000]{
mathrm{Var}[X] = frac{1}{12} k (n+1) (n-k).}$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022615%2fon-the-variance-in-the-bernoulli-scheme%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
With $n$ the number of cards and $k$ the number drawn we have the
OGF
$$[u^k] prod_{q=1}^n (1+ux^q).$$
Differentiate once for the expectation
$$[u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}$$
and set $x=1$:
$$[u^k] prod_{q=1}^n (1+u)
sum_{q=1}^n frac{q u}{1+u}
= [u^k] (1+u)^{n-1} u frac{1}{2} n (n+1)
\ = frac{1}{2} n (n+1) {n-1choose k-1}.$$
This gives for the expectation
$$frac{1}{2} n (n+1) {n-1choose k-1} {nchoose k}^{-1}
= frac{1}{2} n (n+1) {n-1choose k-1}
frac{k}{n} {n-1choose k-1}^{-1}$$
or
$$bbox[5px,border:2px solid #00A000]{
mathrm{E}[X] = frac{1}{2} k (n+1).}$$
Differentiate again for the next factorial moment
$$[u^k] prod_{q=1}^n (1+ux^q)
left(sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}right)^2
\ + [u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q (q-1) u x^{q-2}}{1+ux^q}
- [u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q u x^{q-1}}{(1+ux^q)^2} q u x^{q-1}$$
and once more set $x=1$:
$$[u^k] (1+u)^n
left(sum_{q=1}^n frac{q u}{1+u}right)^2
\ + [u^k] (1+u)^n
sum_{q=1}^n frac{q (q-1) u}{1+u}
- [u^k] (1+u)^n
sum_{q=1}^n frac{q u}{(1+u)^2} q u
\ = {n-2choose k-2} frac{1}{4} n^2 (n+1)^2
\ + {n-1choose k-1} frac{1}{3} (n-1) n (n+1)
- {n-2choose k-2} frac{1}{6} n (n+1) (2n+1).$$
This gives for the second factorial moment
$$ frac{k(k-1)}{n(n-1)} frac{1}{4} n^2 (n+1)^2
\ + frac{k}{n} frac{1}{3} (n-1) n (n+1)
- frac{k(k-1)}{n(n-1)} frac{1}{6} n (n+1) (2n+1)
\ = frac{k(k-1)}{n-1} frac{1}{4} n (n+1)^2
+ k frac{1}{3} (n-1) (n+1)
- frac{k(k-1)}{n-1} frac{1}{6} (n+1) (2n+1).$$
or
$$bbox[5px,border:2px solid #00A000]{
mathrm{E}[X(X-1)] = frac{1}{12} k (n+1)
(3 k n + 2 k + n - 6).}$$
Finally recall that
$$mathrm{Var}[X] =
mathrm{E}[X(X-1)] + mathrm{E}[X] - mathrm{E}[X]^2$$
so that
$$bbox[5px,border:2px solid #00A000]{
mathrm{Var}[X] = frac{1}{12} k (n+1) (n-k).}$$
add a comment |
With $n$ the number of cards and $k$ the number drawn we have the
OGF
$$[u^k] prod_{q=1}^n (1+ux^q).$$
Differentiate once for the expectation
$$[u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}$$
and set $x=1$:
$$[u^k] prod_{q=1}^n (1+u)
sum_{q=1}^n frac{q u}{1+u}
= [u^k] (1+u)^{n-1} u frac{1}{2} n (n+1)
\ = frac{1}{2} n (n+1) {n-1choose k-1}.$$
This gives for the expectation
$$frac{1}{2} n (n+1) {n-1choose k-1} {nchoose k}^{-1}
= frac{1}{2} n (n+1) {n-1choose k-1}
frac{k}{n} {n-1choose k-1}^{-1}$$
or
$$bbox[5px,border:2px solid #00A000]{
mathrm{E}[X] = frac{1}{2} k (n+1).}$$
Differentiate again for the next factorial moment
$$[u^k] prod_{q=1}^n (1+ux^q)
left(sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}right)^2
\ + [u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q (q-1) u x^{q-2}}{1+ux^q}
- [u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q u x^{q-1}}{(1+ux^q)^2} q u x^{q-1}$$
and once more set $x=1$:
$$[u^k] (1+u)^n
left(sum_{q=1}^n frac{q u}{1+u}right)^2
\ + [u^k] (1+u)^n
sum_{q=1}^n frac{q (q-1) u}{1+u}
- [u^k] (1+u)^n
sum_{q=1}^n frac{q u}{(1+u)^2} q u
\ = {n-2choose k-2} frac{1}{4} n^2 (n+1)^2
\ + {n-1choose k-1} frac{1}{3} (n-1) n (n+1)
- {n-2choose k-2} frac{1}{6} n (n+1) (2n+1).$$
This gives for the second factorial moment
$$ frac{k(k-1)}{n(n-1)} frac{1}{4} n^2 (n+1)^2
\ + frac{k}{n} frac{1}{3} (n-1) n (n+1)
- frac{k(k-1)}{n(n-1)} frac{1}{6} n (n+1) (2n+1)
\ = frac{k(k-1)}{n-1} frac{1}{4} n (n+1)^2
+ k frac{1}{3} (n-1) (n+1)
- frac{k(k-1)}{n-1} frac{1}{6} (n+1) (2n+1).$$
or
$$bbox[5px,border:2px solid #00A000]{
mathrm{E}[X(X-1)] = frac{1}{12} k (n+1)
(3 k n + 2 k + n - 6).}$$
Finally recall that
$$mathrm{Var}[X] =
mathrm{E}[X(X-1)] + mathrm{E}[X] - mathrm{E}[X]^2$$
so that
$$bbox[5px,border:2px solid #00A000]{
mathrm{Var}[X] = frac{1}{12} k (n+1) (n-k).}$$
add a comment |
With $n$ the number of cards and $k$ the number drawn we have the
OGF
$$[u^k] prod_{q=1}^n (1+ux^q).$$
Differentiate once for the expectation
$$[u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}$$
and set $x=1$:
$$[u^k] prod_{q=1}^n (1+u)
sum_{q=1}^n frac{q u}{1+u}
= [u^k] (1+u)^{n-1} u frac{1}{2} n (n+1)
\ = frac{1}{2} n (n+1) {n-1choose k-1}.$$
This gives for the expectation
$$frac{1}{2} n (n+1) {n-1choose k-1} {nchoose k}^{-1}
= frac{1}{2} n (n+1) {n-1choose k-1}
frac{k}{n} {n-1choose k-1}^{-1}$$
or
$$bbox[5px,border:2px solid #00A000]{
mathrm{E}[X] = frac{1}{2} k (n+1).}$$
Differentiate again for the next factorial moment
$$[u^k] prod_{q=1}^n (1+ux^q)
left(sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}right)^2
\ + [u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q (q-1) u x^{q-2}}{1+ux^q}
- [u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q u x^{q-1}}{(1+ux^q)^2} q u x^{q-1}$$
and once more set $x=1$:
$$[u^k] (1+u)^n
left(sum_{q=1}^n frac{q u}{1+u}right)^2
\ + [u^k] (1+u)^n
sum_{q=1}^n frac{q (q-1) u}{1+u}
- [u^k] (1+u)^n
sum_{q=1}^n frac{q u}{(1+u)^2} q u
\ = {n-2choose k-2} frac{1}{4} n^2 (n+1)^2
\ + {n-1choose k-1} frac{1}{3} (n-1) n (n+1)
- {n-2choose k-2} frac{1}{6} n (n+1) (2n+1).$$
This gives for the second factorial moment
$$ frac{k(k-1)}{n(n-1)} frac{1}{4} n^2 (n+1)^2
\ + frac{k}{n} frac{1}{3} (n-1) n (n+1)
- frac{k(k-1)}{n(n-1)} frac{1}{6} n (n+1) (2n+1)
\ = frac{k(k-1)}{n-1} frac{1}{4} n (n+1)^2
+ k frac{1}{3} (n-1) (n+1)
- frac{k(k-1)}{n-1} frac{1}{6} (n+1) (2n+1).$$
or
$$bbox[5px,border:2px solid #00A000]{
mathrm{E}[X(X-1)] = frac{1}{12} k (n+1)
(3 k n + 2 k + n - 6).}$$
Finally recall that
$$mathrm{Var}[X] =
mathrm{E}[X(X-1)] + mathrm{E}[X] - mathrm{E}[X]^2$$
so that
$$bbox[5px,border:2px solid #00A000]{
mathrm{Var}[X] = frac{1}{12} k (n+1) (n-k).}$$
With $n$ the number of cards and $k$ the number drawn we have the
OGF
$$[u^k] prod_{q=1}^n (1+ux^q).$$
Differentiate once for the expectation
$$[u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}$$
and set $x=1$:
$$[u^k] prod_{q=1}^n (1+u)
sum_{q=1}^n frac{q u}{1+u}
= [u^k] (1+u)^{n-1} u frac{1}{2} n (n+1)
\ = frac{1}{2} n (n+1) {n-1choose k-1}.$$
This gives for the expectation
$$frac{1}{2} n (n+1) {n-1choose k-1} {nchoose k}^{-1}
= frac{1}{2} n (n+1) {n-1choose k-1}
frac{k}{n} {n-1choose k-1}^{-1}$$
or
$$bbox[5px,border:2px solid #00A000]{
mathrm{E}[X] = frac{1}{2} k (n+1).}$$
Differentiate again for the next factorial moment
$$[u^k] prod_{q=1}^n (1+ux^q)
left(sum_{q=1}^n frac{q u x^{q-1}}{1+ux^q}right)^2
\ + [u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q (q-1) u x^{q-2}}{1+ux^q}
- [u^k] prod_{q=1}^n (1+ux^q)
sum_{q=1}^n frac{q u x^{q-1}}{(1+ux^q)^2} q u x^{q-1}$$
and once more set $x=1$:
$$[u^k] (1+u)^n
left(sum_{q=1}^n frac{q u}{1+u}right)^2
\ + [u^k] (1+u)^n
sum_{q=1}^n frac{q (q-1) u}{1+u}
- [u^k] (1+u)^n
sum_{q=1}^n frac{q u}{(1+u)^2} q u
\ = {n-2choose k-2} frac{1}{4} n^2 (n+1)^2
\ + {n-1choose k-1} frac{1}{3} (n-1) n (n+1)
- {n-2choose k-2} frac{1}{6} n (n+1) (2n+1).$$
This gives for the second factorial moment
$$ frac{k(k-1)}{n(n-1)} frac{1}{4} n^2 (n+1)^2
\ + frac{k}{n} frac{1}{3} (n-1) n (n+1)
- frac{k(k-1)}{n(n-1)} frac{1}{6} n (n+1) (2n+1)
\ = frac{k(k-1)}{n-1} frac{1}{4} n (n+1)^2
+ k frac{1}{3} (n-1) (n+1)
- frac{k(k-1)}{n-1} frac{1}{6} (n+1) (2n+1).$$
or
$$bbox[5px,border:2px solid #00A000]{
mathrm{E}[X(X-1)] = frac{1}{12} k (n+1)
(3 k n + 2 k + n - 6).}$$
Finally recall that
$$mathrm{Var}[X] =
mathrm{E}[X(X-1)] + mathrm{E}[X] - mathrm{E}[X]^2$$
so that
$$bbox[5px,border:2px solid #00A000]{
mathrm{Var}[X] = frac{1}{12} k (n+1) (n-k).}$$
edited Dec 3 '18 at 15:42
answered Dec 3 '18 at 15:34
Marko Riedel
39.2k339107
39.2k339107
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022615%2fon-the-variance-in-the-bernoulli-scheme%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown