Prove that integral of $ 1-cosleft(frac{1}{x^2}right) $ is finite
I need to prove that
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right) dx < infty $$
My attempt:
$$ forall xin[0,infty] hspace{1cm} 0 < 1 - cosleft(frac{1}{x^2}right) < 2 tag{1}. $$
Using L'Hôpital's rule I can show that:
$$ 1 - cosleft(frac{1}{x^2}right) underset{x to infty}{sim} frac{1}{2x^4} tag{2} $$
Which means that $ 1 - cosleft(frac{1}{x^2}right)$ behaves like $ frac{1}{2x^4} $ when $ x to infty $.
So I think that, there exist $N in mathbb{N} $ such that:
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right)dx < int_0^{N} 2dx + int_N^{infty} frac{1}{x^4}dx < infty $$
but I'm not sure. I would appreciate any tips or hints.
calculus integration proof-verification
add a comment |
I need to prove that
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right) dx < infty $$
My attempt:
$$ forall xin[0,infty] hspace{1cm} 0 < 1 - cosleft(frac{1}{x^2}right) < 2 tag{1}. $$
Using L'Hôpital's rule I can show that:
$$ 1 - cosleft(frac{1}{x^2}right) underset{x to infty}{sim} frac{1}{2x^4} tag{2} $$
Which means that $ 1 - cosleft(frac{1}{x^2}right)$ behaves like $ frac{1}{2x^4} $ when $ x to infty $.
So I think that, there exist $N in mathbb{N} $ such that:
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right)dx < int_0^{N} 2dx + int_N^{infty} frac{1}{x^4}dx < infty $$
but I'm not sure. I would appreciate any tips or hints.
calculus integration proof-verification
add a comment |
I need to prove that
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right) dx < infty $$
My attempt:
$$ forall xin[0,infty] hspace{1cm} 0 < 1 - cosleft(frac{1}{x^2}right) < 2 tag{1}. $$
Using L'Hôpital's rule I can show that:
$$ 1 - cosleft(frac{1}{x^2}right) underset{x to infty}{sim} frac{1}{2x^4} tag{2} $$
Which means that $ 1 - cosleft(frac{1}{x^2}right)$ behaves like $ frac{1}{2x^4} $ when $ x to infty $.
So I think that, there exist $N in mathbb{N} $ such that:
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right)dx < int_0^{N} 2dx + int_N^{infty} frac{1}{x^4}dx < infty $$
but I'm not sure. I would appreciate any tips or hints.
calculus integration proof-verification
I need to prove that
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right) dx < infty $$
My attempt:
$$ forall xin[0,infty] hspace{1cm} 0 < 1 - cosleft(frac{1}{x^2}right) < 2 tag{1}. $$
Using L'Hôpital's rule I can show that:
$$ 1 - cosleft(frac{1}{x^2}right) underset{x to infty}{sim} frac{1}{2x^4} tag{2} $$
Which means that $ 1 - cosleft(frac{1}{x^2}right)$ behaves like $ frac{1}{2x^4} $ when $ x to infty $.
So I think that, there exist $N in mathbb{N} $ such that:
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right)dx < int_0^{N} 2dx + int_N^{infty} frac{1}{x^4}dx < infty $$
but I'm not sure. I would appreciate any tips or hints.
calculus integration proof-verification
calculus integration proof-verification
edited Dec 2 '18 at 14:34
Larry
1,7232823
1,7232823
asked Dec 2 '18 at 14:01
Wywana
535
535
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
Use the substitution $1/x=t$, so the integral becomes
$$
int_0^{infty} frac{1-cos(t^2)}{t^2},dt
$$
Since
$$
lim_{tto0}frac{1-cos(t^2)}{t^2}=0
$$
convergence is not an issue at $0$. Since
$$
0le 1-cos(t^2)le 2
$$
we have that, for $tge1$,
$$
0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
$$
Now show convergence of
$$
int_1^infty frac{2}{t^2},dt
$$
add a comment |
$$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:
$$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
leads to $I=color{red}{sqrt{frac{pi}{2}}}$.
add a comment |
$int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$
add a comment |
One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get
begin{multline}
int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
\ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
end{multline}
Since both integrals are of bounded functions over a finite range, they must be finite.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022672%2fprove-that-integral-of-1-cos-left-frac1x2-right-is-finite%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
Use the substitution $1/x=t$, so the integral becomes
$$
int_0^{infty} frac{1-cos(t^2)}{t^2},dt
$$
Since
$$
lim_{tto0}frac{1-cos(t^2)}{t^2}=0
$$
convergence is not an issue at $0$. Since
$$
0le 1-cos(t^2)le 2
$$
we have that, for $tge1$,
$$
0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
$$
Now show convergence of
$$
int_1^infty frac{2}{t^2},dt
$$
add a comment |
Use the substitution $1/x=t$, so the integral becomes
$$
int_0^{infty} frac{1-cos(t^2)}{t^2},dt
$$
Since
$$
lim_{tto0}frac{1-cos(t^2)}{t^2}=0
$$
convergence is not an issue at $0$. Since
$$
0le 1-cos(t^2)le 2
$$
we have that, for $tge1$,
$$
0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
$$
Now show convergence of
$$
int_1^infty frac{2}{t^2},dt
$$
add a comment |
Use the substitution $1/x=t$, so the integral becomes
$$
int_0^{infty} frac{1-cos(t^2)}{t^2},dt
$$
Since
$$
lim_{tto0}frac{1-cos(t^2)}{t^2}=0
$$
convergence is not an issue at $0$. Since
$$
0le 1-cos(t^2)le 2
$$
we have that, for $tge1$,
$$
0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
$$
Now show convergence of
$$
int_1^infty frac{2}{t^2},dt
$$
Use the substitution $1/x=t$, so the integral becomes
$$
int_0^{infty} frac{1-cos(t^2)}{t^2},dt
$$
Since
$$
lim_{tto0}frac{1-cos(t^2)}{t^2}=0
$$
convergence is not an issue at $0$. Since
$$
0le 1-cos(t^2)le 2
$$
we have that, for $tge1$,
$$
0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
$$
Now show convergence of
$$
int_1^infty frac{2}{t^2},dt
$$
answered Dec 2 '18 at 15:22
egreg
178k1484201
178k1484201
add a comment |
add a comment |
$$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:
$$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
leads to $I=color{red}{sqrt{frac{pi}{2}}}$.
add a comment |
$$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:
$$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
leads to $I=color{red}{sqrt{frac{pi}{2}}}$.
add a comment |
$$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:
$$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
leads to $I=color{red}{sqrt{frac{pi}{2}}}$.
$$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:
$$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
leads to $I=color{red}{sqrt{frac{pi}{2}}}$.
answered Dec 2 '18 at 17:24
Jack D'Aurizio
287k33280657
287k33280657
add a comment |
add a comment |
$int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$
add a comment |
$int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$
add a comment |
$int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$
$int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$
answered Dec 2 '18 at 14:22
John_Wick
1,381111
1,381111
add a comment |
add a comment |
One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get
begin{multline}
int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
\ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
end{multline}
Since both integrals are of bounded functions over a finite range, they must be finite.
add a comment |
One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get
begin{multline}
int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
\ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
end{multline}
Since both integrals are of bounded functions over a finite range, they must be finite.
add a comment |
One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get
begin{multline}
int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
\ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
end{multline}
Since both integrals are of bounded functions over a finite range, they must be finite.
One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get
begin{multline}
int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
\ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
end{multline}
Since both integrals are of bounded functions over a finite range, they must be finite.
answered Dec 2 '18 at 14:49
eyeballfrog
6,048629
6,048629
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022672%2fprove-that-integral-of-1-cos-left-frac1x2-right-is-finite%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown