Baumslag-Solitar Group $G=langle a,t mid tat^{-1}=a^kranglecongmathbb{Z}[1/k]rtimeslangle trangle$?
$begingroup$
Let $G$ be the Baumslag-Solitar group $langle a,t mid tat^{-1}=a^krangle$ and
$$mathbb{Z}[1/k]:=left{frac{x}{k^n}mid xinmathbb{Z},ninmathbb{N}cup{0}right}.$$
I'm searching for an isomorphism $G=langle a,t mid tat^{-1}=a^kranglecongmathbb{Z}[1/k]rtimeslangle trangle$. I only need to know the map $Psi:langle arangle^Gtomathbb{Z}[1/k]$.
I defined $$Psi(t^na^xt^{-n}):=frac{x}{k^n}.$$
But for one hour I'm calculating to prove that this map induces an homomorphism, but I always get for $n>m$:
$$Psi(t^na^xt^{-n})cdot Psi(t^ma^yt^{-m})=frac{x}{k^n}+frac{y}{k^m}=frac{x+ycdot k^{n-m}}{k^n}$$
and
$$Psi(t^na^xt^{-n}cdot t^ma^yt^{-m})=Psi(t^ma^{(xcdot k^{n-m})}t^{-m}t^myt^{-m})=Psi(t^ma^{xcdot k^{n-m}+y}t^{-m})=frac{xcdot k^{n-m}+y}{k^m}.$$
And these images are obvisually unequal. So what is my fault?
Is this map the wrong one?
Thanks for your help.
abstract-algebra group-theory geometric-group-theory
$endgroup$
add a comment |
$begingroup$
Let $G$ be the Baumslag-Solitar group $langle a,t mid tat^{-1}=a^krangle$ and
$$mathbb{Z}[1/k]:=left{frac{x}{k^n}mid xinmathbb{Z},ninmathbb{N}cup{0}right}.$$
I'm searching for an isomorphism $G=langle a,t mid tat^{-1}=a^kranglecongmathbb{Z}[1/k]rtimeslangle trangle$. I only need to know the map $Psi:langle arangle^Gtomathbb{Z}[1/k]$.
I defined $$Psi(t^na^xt^{-n}):=frac{x}{k^n}.$$
But for one hour I'm calculating to prove that this map induces an homomorphism, but I always get for $n>m$:
$$Psi(t^na^xt^{-n})cdot Psi(t^ma^yt^{-m})=frac{x}{k^n}+frac{y}{k^m}=frac{x+ycdot k^{n-m}}{k^n}$$
and
$$Psi(t^na^xt^{-n}cdot t^ma^yt^{-m})=Psi(t^ma^{(xcdot k^{n-m})}t^{-m}t^myt^{-m})=Psi(t^ma^{xcdot k^{n-m}+y}t^{-m})=frac{xcdot k^{n-m}+y}{k^m}.$$
And these images are obvisually unequal. So what is my fault?
Is this map the wrong one?
Thanks for your help.
abstract-algebra group-theory geometric-group-theory
$endgroup$
$begingroup$
I think Baumslag–Solitar group is correct but I am not sure.
$endgroup$
– Babak Miraftab
May 28 '12 at 17:04
$begingroup$
Yes. Thank you.
$endgroup$
– Peter
May 28 '12 at 17:30
$begingroup$
$tat^{-1}=a^k$, so $Psi(t^n a^x t^{-n})$ should multiply (not divide) the exponent of $a$ by $k$. Hence the image should be $xk^n$.
$endgroup$
– Ted
May 28 '12 at 21:11
add a comment |
$begingroup$
Let $G$ be the Baumslag-Solitar group $langle a,t mid tat^{-1}=a^krangle$ and
$$mathbb{Z}[1/k]:=left{frac{x}{k^n}mid xinmathbb{Z},ninmathbb{N}cup{0}right}.$$
I'm searching for an isomorphism $G=langle a,t mid tat^{-1}=a^kranglecongmathbb{Z}[1/k]rtimeslangle trangle$. I only need to know the map $Psi:langle arangle^Gtomathbb{Z}[1/k]$.
I defined $$Psi(t^na^xt^{-n}):=frac{x}{k^n}.$$
But for one hour I'm calculating to prove that this map induces an homomorphism, but I always get for $n>m$:
$$Psi(t^na^xt^{-n})cdot Psi(t^ma^yt^{-m})=frac{x}{k^n}+frac{y}{k^m}=frac{x+ycdot k^{n-m}}{k^n}$$
and
$$Psi(t^na^xt^{-n}cdot t^ma^yt^{-m})=Psi(t^ma^{(xcdot k^{n-m})}t^{-m}t^myt^{-m})=Psi(t^ma^{xcdot k^{n-m}+y}t^{-m})=frac{xcdot k^{n-m}+y}{k^m}.$$
And these images are obvisually unequal. So what is my fault?
Is this map the wrong one?
Thanks for your help.
abstract-algebra group-theory geometric-group-theory
$endgroup$
Let $G$ be the Baumslag-Solitar group $langle a,t mid tat^{-1}=a^krangle$ and
$$mathbb{Z}[1/k]:=left{frac{x}{k^n}mid xinmathbb{Z},ninmathbb{N}cup{0}right}.$$
I'm searching for an isomorphism $G=langle a,t mid tat^{-1}=a^kranglecongmathbb{Z}[1/k]rtimeslangle trangle$. I only need to know the map $Psi:langle arangle^Gtomathbb{Z}[1/k]$.
I defined $$Psi(t^na^xt^{-n}):=frac{x}{k^n}.$$
But for one hour I'm calculating to prove that this map induces an homomorphism, but I always get for $n>m$:
$$Psi(t^na^xt^{-n})cdot Psi(t^ma^yt^{-m})=frac{x}{k^n}+frac{y}{k^m}=frac{x+ycdot k^{n-m}}{k^n}$$
and
$$Psi(t^na^xt^{-n}cdot t^ma^yt^{-m})=Psi(t^ma^{(xcdot k^{n-m})}t^{-m}t^myt^{-m})=Psi(t^ma^{xcdot k^{n-m}+y}t^{-m})=frac{xcdot k^{n-m}+y}{k^m}.$$
And these images are obvisually unequal. So what is my fault?
Is this map the wrong one?
Thanks for your help.
abstract-algebra group-theory geometric-group-theory
abstract-algebra group-theory geometric-group-theory
edited May 28 '12 at 19:32
t.b.
62.4k7207287
62.4k7207287
asked May 28 '12 at 17:01
PeterPeter
1176
1176
$begingroup$
I think Baumslag–Solitar group is correct but I am not sure.
$endgroup$
– Babak Miraftab
May 28 '12 at 17:04
$begingroup$
Yes. Thank you.
$endgroup$
– Peter
May 28 '12 at 17:30
$begingroup$
$tat^{-1}=a^k$, so $Psi(t^n a^x t^{-n})$ should multiply (not divide) the exponent of $a$ by $k$. Hence the image should be $xk^n$.
$endgroup$
– Ted
May 28 '12 at 21:11
add a comment |
$begingroup$
I think Baumslag–Solitar group is correct but I am not sure.
$endgroup$
– Babak Miraftab
May 28 '12 at 17:04
$begingroup$
Yes. Thank you.
$endgroup$
– Peter
May 28 '12 at 17:30
$begingroup$
$tat^{-1}=a^k$, so $Psi(t^n a^x t^{-n})$ should multiply (not divide) the exponent of $a$ by $k$. Hence the image should be $xk^n$.
$endgroup$
– Ted
May 28 '12 at 21:11
$begingroup$
I think Baumslag–Solitar group is correct but I am not sure.
$endgroup$
– Babak Miraftab
May 28 '12 at 17:04
$begingroup$
I think Baumslag–Solitar group is correct but I am not sure.
$endgroup$
– Babak Miraftab
May 28 '12 at 17:04
$begingroup$
Yes. Thank you.
$endgroup$
– Peter
May 28 '12 at 17:30
$begingroup$
Yes. Thank you.
$endgroup$
– Peter
May 28 '12 at 17:30
$begingroup$
$tat^{-1}=a^k$, so $Psi(t^n a^x t^{-n})$ should multiply (not divide) the exponent of $a$ by $k$. Hence the image should be $xk^n$.
$endgroup$
– Ted
May 28 '12 at 21:11
$begingroup$
$tat^{-1}=a^k$, so $Psi(t^n a^x t^{-n})$ should multiply (not divide) the exponent of $a$ by $k$. Hence the image should be $xk^n$.
$endgroup$
– Ted
May 28 '12 at 21:11
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You need to modify the definition of $Psi$: put $$Psi(t^na^xt^{-n})=xk^n$$ (instead of $Psi(t^na^xt^{-n})=xk^{-n}$). The homomorphic property should follow easily along the lines of the computations given in the original question.
Alternatively, you could replace $t$ by $t^{-1}$ in the definition of the Baumslag-Solitar group, in which case the $Psi$ as originally given is a homomorphism.
$endgroup$
add a comment |
$begingroup$
Why any word in $BS(1,2)$ is of the form $a^{-k}b^ma^n$?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f150839%2fbaumslag-solitar-group-g-langle-a-t-mid-tat-1-ak-rangle-cong-mathbbz1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You need to modify the definition of $Psi$: put $$Psi(t^na^xt^{-n})=xk^n$$ (instead of $Psi(t^na^xt^{-n})=xk^{-n}$). The homomorphic property should follow easily along the lines of the computations given in the original question.
Alternatively, you could replace $t$ by $t^{-1}$ in the definition of the Baumslag-Solitar group, in which case the $Psi$ as originally given is a homomorphism.
$endgroup$
add a comment |
$begingroup$
You need to modify the definition of $Psi$: put $$Psi(t^na^xt^{-n})=xk^n$$ (instead of $Psi(t^na^xt^{-n})=xk^{-n}$). The homomorphic property should follow easily along the lines of the computations given in the original question.
Alternatively, you could replace $t$ by $t^{-1}$ in the definition of the Baumslag-Solitar group, in which case the $Psi$ as originally given is a homomorphism.
$endgroup$
add a comment |
$begingroup$
You need to modify the definition of $Psi$: put $$Psi(t^na^xt^{-n})=xk^n$$ (instead of $Psi(t^na^xt^{-n})=xk^{-n}$). The homomorphic property should follow easily along the lines of the computations given in the original question.
Alternatively, you could replace $t$ by $t^{-1}$ in the definition of the Baumslag-Solitar group, in which case the $Psi$ as originally given is a homomorphism.
$endgroup$
You need to modify the definition of $Psi$: put $$Psi(t^na^xt^{-n})=xk^n$$ (instead of $Psi(t^na^xt^{-n})=xk^{-n}$). The homomorphic property should follow easily along the lines of the computations given in the original question.
Alternatively, you could replace $t$ by $t^{-1}$ in the definition of the Baumslag-Solitar group, in which case the $Psi$ as originally given is a homomorphism.
answered May 28 '12 at 20:12
Shane O RourkeShane O Rourke
911811
911811
add a comment |
add a comment |
$begingroup$
Why any word in $BS(1,2)$ is of the form $a^{-k}b^ma^n$?
$endgroup$
add a comment |
$begingroup$
Why any word in $BS(1,2)$ is of the form $a^{-k}b^ma^n$?
$endgroup$
add a comment |
$begingroup$
Why any word in $BS(1,2)$ is of the form $a^{-k}b^ma^n$?
$endgroup$
Why any word in $BS(1,2)$ is of the form $a^{-k}b^ma^n$?
answered Dec 15 '18 at 22:35
eraldcoileraldcoil
395211
395211
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f150839%2fbaumslag-solitar-group-g-langle-a-t-mid-tat-1-ak-rangle-cong-mathbbz1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I think Baumslag–Solitar group is correct but I am not sure.
$endgroup$
– Babak Miraftab
May 28 '12 at 17:04
$begingroup$
Yes. Thank you.
$endgroup$
– Peter
May 28 '12 at 17:30
$begingroup$
$tat^{-1}=a^k$, so $Psi(t^n a^x t^{-n})$ should multiply (not divide) the exponent of $a$ by $k$. Hence the image should be $xk^n$.
$endgroup$
– Ted
May 28 '12 at 21:11