Methods to solve $int_{0}^{infty} frac{e^{-x^2}}{x^2 + 1}:dx$












12












$begingroup$


I have a feel this will be a duplicate question. I have had a look around and couldn't find it, so please advise if so.



Here I wish to address the definite integral:



begin{equation}
I = int_{0}^{infty} frac{e^{-x^2}}{x^2 + 1}:dx
end{equation}



I have solved it using Feynman's Trick, however I feel it's limited and am hoping to find other methods to solve. Without using Residues, what are some other approaches to this integral?



My method:



begin{equation}
I(t) = int_{0}^{infty} frac{e^{-tx^2}}{x^2 + 1}:dx
end{equation}



Here $I = I(1)$ and $I(0) = frac{pi}{2}$. Take the derivative under the curve with respect to '$t$' to achieve:



begin{align}
I'(t) &= int_{0}^{infty} frac{-x^2e^{-tx^2}}{x^2 + 1}:dx = -int_{0}^{infty} frac{x^2e^{-tx^2}}{x^2 + 1}:dx \
&= -left[int_{0}^{infty} frac{left(x^2 + 1 - 1right)e^{-tx^2}}{x^2 + 1}:dx right] \
&= -int_{0}^{infty} e^{-tx^2}:dx + int_{0}^{infty} frac{e^{-tx^2}}{x^2 + 1}:dx \
&= -frac{sqrt{pi}}{2}frac{1}{sqrt{t}} + I(t)
end{align}



And so we arrive at the differential equation:



begin{equation}
I'(t) - I(t) = -frac{sqrt{pi}}{2}frac{1}{sqrt{t}}
end{equation}



Which yields the solution:



begin{equation}
I(t) = frac{pi}{2}e^toperatorname{erfc}left(tright)
end{equation}



Thus,



begin{equation}
I = I(1) int_{0}^{infty} frac{e^{-x^2}}{x^2 + 1}:dx = frac{pi}{2}eoperatorname{erfc}(1)
end{equation}



Addendum:



Using the exact method I've employed, you can extend the above integral into a more genealised form:



begin{equation}
I = int_{0}^{infty} frac{e^{-kx^2}}{x^2 + 1}:dx = frac{pi}{2}e^koperatorname{erfc}(sqrt{k})
end{equation}



Addendum 2:
Whilst we are genealising:
begin{equation}
I = int_{0}^{infty} frac{e^{-kx^2}}{ax^2 + b}:dx = frac{pi}{2b}e^Phioperatorname{erfc}(sqrt{Phi})
end{equation}



Where $Phi = frac{kb}{a}$ and $a,b,k in mathbb{R}^{+}$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    something is wrong. $I<int_0^infty e^{-x^2}=sqrtpi/2$. Your answer is greater than this value
    $endgroup$
    – Andrei
    Dec 16 '18 at 2:54










  • $begingroup$
    @Andrei - You are indeed correct, I mistyped. It should be $operatorname{efrc}$ not $operatorname{erf}$. Thank you for the pickup.
    $endgroup$
    – DavidG
    Dec 16 '18 at 2:55
















12












$begingroup$


I have a feel this will be a duplicate question. I have had a look around and couldn't find it, so please advise if so.



Here I wish to address the definite integral:



begin{equation}
I = int_{0}^{infty} frac{e^{-x^2}}{x^2 + 1}:dx
end{equation}



I have solved it using Feynman's Trick, however I feel it's limited and am hoping to find other methods to solve. Without using Residues, what are some other approaches to this integral?



My method:



begin{equation}
I(t) = int_{0}^{infty} frac{e^{-tx^2}}{x^2 + 1}:dx
end{equation}



Here $I = I(1)$ and $I(0) = frac{pi}{2}$. Take the derivative under the curve with respect to '$t$' to achieve:



begin{align}
I'(t) &= int_{0}^{infty} frac{-x^2e^{-tx^2}}{x^2 + 1}:dx = -int_{0}^{infty} frac{x^2e^{-tx^2}}{x^2 + 1}:dx \
&= -left[int_{0}^{infty} frac{left(x^2 + 1 - 1right)e^{-tx^2}}{x^2 + 1}:dx right] \
&= -int_{0}^{infty} e^{-tx^2}:dx + int_{0}^{infty} frac{e^{-tx^2}}{x^2 + 1}:dx \
&= -frac{sqrt{pi}}{2}frac{1}{sqrt{t}} + I(t)
end{align}



And so we arrive at the differential equation:



begin{equation}
I'(t) - I(t) = -frac{sqrt{pi}}{2}frac{1}{sqrt{t}}
end{equation}



Which yields the solution:



begin{equation}
I(t) = frac{pi}{2}e^toperatorname{erfc}left(tright)
end{equation}



Thus,



begin{equation}
I = I(1) int_{0}^{infty} frac{e^{-x^2}}{x^2 + 1}:dx = frac{pi}{2}eoperatorname{erfc}(1)
end{equation}



Addendum:



Using the exact method I've employed, you can extend the above integral into a more genealised form:



begin{equation}
I = int_{0}^{infty} frac{e^{-kx^2}}{x^2 + 1}:dx = frac{pi}{2}e^koperatorname{erfc}(sqrt{k})
end{equation}



Addendum 2:
Whilst we are genealising:
begin{equation}
I = int_{0}^{infty} frac{e^{-kx^2}}{ax^2 + b}:dx = frac{pi}{2b}e^Phioperatorname{erfc}(sqrt{Phi})
end{equation}



Where $Phi = frac{kb}{a}$ and $a,b,k in mathbb{R}^{+}$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    something is wrong. $I<int_0^infty e^{-x^2}=sqrtpi/2$. Your answer is greater than this value
    $endgroup$
    – Andrei
    Dec 16 '18 at 2:54










  • $begingroup$
    @Andrei - You are indeed correct, I mistyped. It should be $operatorname{efrc}$ not $operatorname{erf}$. Thank you for the pickup.
    $endgroup$
    – DavidG
    Dec 16 '18 at 2:55














12












12








12


10



$begingroup$


I have a feel this will be a duplicate question. I have had a look around and couldn't find it, so please advise if so.



Here I wish to address the definite integral:



begin{equation}
I = int_{0}^{infty} frac{e^{-x^2}}{x^2 + 1}:dx
end{equation}



I have solved it using Feynman's Trick, however I feel it's limited and am hoping to find other methods to solve. Without using Residues, what are some other approaches to this integral?



My method:



begin{equation}
I(t) = int_{0}^{infty} frac{e^{-tx^2}}{x^2 + 1}:dx
end{equation}



Here $I = I(1)$ and $I(0) = frac{pi}{2}$. Take the derivative under the curve with respect to '$t$' to achieve:



begin{align}
I'(t) &= int_{0}^{infty} frac{-x^2e^{-tx^2}}{x^2 + 1}:dx = -int_{0}^{infty} frac{x^2e^{-tx^2}}{x^2 + 1}:dx \
&= -left[int_{0}^{infty} frac{left(x^2 + 1 - 1right)e^{-tx^2}}{x^2 + 1}:dx right] \
&= -int_{0}^{infty} e^{-tx^2}:dx + int_{0}^{infty} frac{e^{-tx^2}}{x^2 + 1}:dx \
&= -frac{sqrt{pi}}{2}frac{1}{sqrt{t}} + I(t)
end{align}



And so we arrive at the differential equation:



begin{equation}
I'(t) - I(t) = -frac{sqrt{pi}}{2}frac{1}{sqrt{t}}
end{equation}



Which yields the solution:



begin{equation}
I(t) = frac{pi}{2}e^toperatorname{erfc}left(tright)
end{equation}



Thus,



begin{equation}
I = I(1) int_{0}^{infty} frac{e^{-x^2}}{x^2 + 1}:dx = frac{pi}{2}eoperatorname{erfc}(1)
end{equation}



Addendum:



Using the exact method I've employed, you can extend the above integral into a more genealised form:



begin{equation}
I = int_{0}^{infty} frac{e^{-kx^2}}{x^2 + 1}:dx = frac{pi}{2}e^koperatorname{erfc}(sqrt{k})
end{equation}



Addendum 2:
Whilst we are genealising:
begin{equation}
I = int_{0}^{infty} frac{e^{-kx^2}}{ax^2 + b}:dx = frac{pi}{2b}e^Phioperatorname{erfc}(sqrt{Phi})
end{equation}



Where $Phi = frac{kb}{a}$ and $a,b,k in mathbb{R}^{+}$










share|cite|improve this question











$endgroup$




I have a feel this will be a duplicate question. I have had a look around and couldn't find it, so please advise if so.



Here I wish to address the definite integral:



begin{equation}
I = int_{0}^{infty} frac{e^{-x^2}}{x^2 + 1}:dx
end{equation}



I have solved it using Feynman's Trick, however I feel it's limited and am hoping to find other methods to solve. Without using Residues, what are some other approaches to this integral?



My method:



begin{equation}
I(t) = int_{0}^{infty} frac{e^{-tx^2}}{x^2 + 1}:dx
end{equation}



Here $I = I(1)$ and $I(0) = frac{pi}{2}$. Take the derivative under the curve with respect to '$t$' to achieve:



begin{align}
I'(t) &= int_{0}^{infty} frac{-x^2e^{-tx^2}}{x^2 + 1}:dx = -int_{0}^{infty} frac{x^2e^{-tx^2}}{x^2 + 1}:dx \
&= -left[int_{0}^{infty} frac{left(x^2 + 1 - 1right)e^{-tx^2}}{x^2 + 1}:dx right] \
&= -int_{0}^{infty} e^{-tx^2}:dx + int_{0}^{infty} frac{e^{-tx^2}}{x^2 + 1}:dx \
&= -frac{sqrt{pi}}{2}frac{1}{sqrt{t}} + I(t)
end{align}



And so we arrive at the differential equation:



begin{equation}
I'(t) - I(t) = -frac{sqrt{pi}}{2}frac{1}{sqrt{t}}
end{equation}



Which yields the solution:



begin{equation}
I(t) = frac{pi}{2}e^toperatorname{erfc}left(tright)
end{equation}



Thus,



begin{equation}
I = I(1) int_{0}^{infty} frac{e^{-x^2}}{x^2 + 1}:dx = frac{pi}{2}eoperatorname{erfc}(1)
end{equation}



Addendum:



Using the exact method I've employed, you can extend the above integral into a more genealised form:



begin{equation}
I = int_{0}^{infty} frac{e^{-kx^2}}{x^2 + 1}:dx = frac{pi}{2}e^koperatorname{erfc}(sqrt{k})
end{equation}



Addendum 2:
Whilst we are genealising:
begin{equation}
I = int_{0}^{infty} frac{e^{-kx^2}}{ax^2 + b}:dx = frac{pi}{2b}e^Phioperatorname{erfc}(sqrt{Phi})
end{equation}



Where $Phi = frac{kb}{a}$ and $a,b,k in mathbb{R}^{+}$







real-analysis integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 16 '18 at 3:38







DavidG

















asked Dec 16 '18 at 2:42









DavidGDavidG

2,1121723




2,1121723








  • 1




    $begingroup$
    something is wrong. $I<int_0^infty e^{-x^2}=sqrtpi/2$. Your answer is greater than this value
    $endgroup$
    – Andrei
    Dec 16 '18 at 2:54










  • $begingroup$
    @Andrei - You are indeed correct, I mistyped. It should be $operatorname{efrc}$ not $operatorname{erf}$. Thank you for the pickup.
    $endgroup$
    – DavidG
    Dec 16 '18 at 2:55














  • 1




    $begingroup$
    something is wrong. $I<int_0^infty e^{-x^2}=sqrtpi/2$. Your answer is greater than this value
    $endgroup$
    – Andrei
    Dec 16 '18 at 2:54










  • $begingroup$
    @Andrei - You are indeed correct, I mistyped. It should be $operatorname{efrc}$ not $operatorname{erf}$. Thank you for the pickup.
    $endgroup$
    – DavidG
    Dec 16 '18 at 2:55








1




1




$begingroup$
something is wrong. $I<int_0^infty e^{-x^2}=sqrtpi/2$. Your answer is greater than this value
$endgroup$
– Andrei
Dec 16 '18 at 2:54




$begingroup$
something is wrong. $I<int_0^infty e^{-x^2}=sqrtpi/2$. Your answer is greater than this value
$endgroup$
– Andrei
Dec 16 '18 at 2:54












$begingroup$
@Andrei - You are indeed correct, I mistyped. It should be $operatorname{efrc}$ not $operatorname{erf}$. Thank you for the pickup.
$endgroup$
– DavidG
Dec 16 '18 at 2:55




$begingroup$
@Andrei - You are indeed correct, I mistyped. It should be $operatorname{efrc}$ not $operatorname{erf}$. Thank you for the pickup.
$endgroup$
– DavidG
Dec 16 '18 at 2:55










2 Answers
2






active

oldest

votes


















17












$begingroup$

You can use Plancherel's theorem. Note that
$$
2I = int_{-infty}^{infty} frac{e^{-x^2}}{x^2 + 1}dx.
$$
Let $f(x) = e^{-x^2}$ and $g(x) = frac{1}{1+x^2}$. Then we have
$$
widehat{f}(xi) = sqrt{pi}e^{-pi^2xi^2},
$$
and
$$
widehat{g}(xi) = pi e^{-2pi|xi|}.
$$
By Plancherel's theorem, we have
$$begin{eqnarray}
int_{-infty}^{infty} f(x)g(x)dx&=&int_{-infty}^{infty} widehat{f}(xi)widehat{g}(xi)dxi\&=&pi^{frac{3}{2}}int_{-infty}^{infty}e^{-pi^2xi^2-2pi|xi|}dxi\
&=&2pi^{frac{3}{2}}int_{0}^{infty}e^{-pi^2xi^2-2pixi}dxi\
&=&2pi^{frac{3}{2}}eint_{frac{1}{pi}}^{infty}e^{-pi^2xi^2}dxi\
&=&2pi^{frac{1}{2}}eint_{1}^{infty}e^{-xi^2}dxi = pi e operatorname{erfc}(1).
end{eqnarray}$$

This gives $I = frac{pi}{2}e operatorname{erfc}(1).$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks @Song! I was not aware of Plancherel's theorem :-)
    $endgroup$
    – DavidG
    Dec 16 '18 at 3:17










  • $begingroup$
    With respect (as I loved the solution), but if I apply Plancherel's theorem - am I not using residues in disguise? (again, love the solution).
    $endgroup$
    – DavidG
    Dec 20 '18 at 0:38






  • 1




    $begingroup$
    Your concern is legitimate. Perhaps the quickest way to evaluate $widehat{f}$ and $widehat{g}$ is to use complex analysis tools. But the method is still real analytic. We can evaluate $int_{-infty}^infty e^{zx}e^{-x^2}dx,;zinmathbb{C}$ easily using power series expansion. About $widehat{g}$, note that Fourier transform admits the inversion formula. So what we should check is only whether $int_{-infty}^inftywidehat{g}(xi)e^{2 pi ixi x}dxi=g(x)$, and it can be checked directly by evaluating the integral separately on $(-infty,0)$ and $(0,infty)$.
    $endgroup$
    – Song
    Dec 20 '18 at 2:20





















7












$begingroup$

Here is a method that employs the old trick of converting the integral into a double integral.



Observe that
$$frac{1}{1 + x^2} = int_0^infty e^{-u(1 + x^2)} , du.$$
So your integral can be rewritten as
$$I = int_0^infty e^{-x^2} int_0^infty e^{-u(1 + x^2)} , du , dx.$$
or
$$I = int_0^infty e^{-u} int_0^infty e^{-(1 + u)x^2} , dx , du,$$
on changing the order of integration.



Enforcing a substitution of $x mapsto x/sqrt{1 + u}$ gives
$$I = int_0^infty frac{e^{-u}}{sqrt{1 + u}} int_0^infty e^{-x^2} , dx = frac{sqrt{pi}}{2} int_0^infty frac{e^{-u}}{sqrt{1 + u}} , du.$$



Next exforcing a substitution of $u mapsto u^2 - 1$ gives
$$I = sqrt{pi} e int_1^infty e^{-u^2} , du = sqrt{pi} e cdot frac{sqrt{pi}}{2} text{erf} (1) = frac{pi e}{2} text{erf} (1),$$
as expected.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Love it. Still developing my skills with respect to integral ‘expansions’.
    $endgroup$
    – DavidG
    Dec 16 '18 at 10:00










  • $begingroup$
    Is another one of those good techniques to have handy in the integration toolbox.
    $endgroup$
    – omegadot
    Dec 16 '18 at 11:11










  • $begingroup$
    Absolutely. Great technique.
    $endgroup$
    – DavidG
    Dec 16 '18 at 11:12











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042183%2fmethods-to-solve-int-0-infty-frace-x2x2-1-dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









17












$begingroup$

You can use Plancherel's theorem. Note that
$$
2I = int_{-infty}^{infty} frac{e^{-x^2}}{x^2 + 1}dx.
$$
Let $f(x) = e^{-x^2}$ and $g(x) = frac{1}{1+x^2}$. Then we have
$$
widehat{f}(xi) = sqrt{pi}e^{-pi^2xi^2},
$$
and
$$
widehat{g}(xi) = pi e^{-2pi|xi|}.
$$
By Plancherel's theorem, we have
$$begin{eqnarray}
int_{-infty}^{infty} f(x)g(x)dx&=&int_{-infty}^{infty} widehat{f}(xi)widehat{g}(xi)dxi\&=&pi^{frac{3}{2}}int_{-infty}^{infty}e^{-pi^2xi^2-2pi|xi|}dxi\
&=&2pi^{frac{3}{2}}int_{0}^{infty}e^{-pi^2xi^2-2pixi}dxi\
&=&2pi^{frac{3}{2}}eint_{frac{1}{pi}}^{infty}e^{-pi^2xi^2}dxi\
&=&2pi^{frac{1}{2}}eint_{1}^{infty}e^{-xi^2}dxi = pi e operatorname{erfc}(1).
end{eqnarray}$$

This gives $I = frac{pi}{2}e operatorname{erfc}(1).$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks @Song! I was not aware of Plancherel's theorem :-)
    $endgroup$
    – DavidG
    Dec 16 '18 at 3:17










  • $begingroup$
    With respect (as I loved the solution), but if I apply Plancherel's theorem - am I not using residues in disguise? (again, love the solution).
    $endgroup$
    – DavidG
    Dec 20 '18 at 0:38






  • 1




    $begingroup$
    Your concern is legitimate. Perhaps the quickest way to evaluate $widehat{f}$ and $widehat{g}$ is to use complex analysis tools. But the method is still real analytic. We can evaluate $int_{-infty}^infty e^{zx}e^{-x^2}dx,;zinmathbb{C}$ easily using power series expansion. About $widehat{g}$, note that Fourier transform admits the inversion formula. So what we should check is only whether $int_{-infty}^inftywidehat{g}(xi)e^{2 pi ixi x}dxi=g(x)$, and it can be checked directly by evaluating the integral separately on $(-infty,0)$ and $(0,infty)$.
    $endgroup$
    – Song
    Dec 20 '18 at 2:20


















17












$begingroup$

You can use Plancherel's theorem. Note that
$$
2I = int_{-infty}^{infty} frac{e^{-x^2}}{x^2 + 1}dx.
$$
Let $f(x) = e^{-x^2}$ and $g(x) = frac{1}{1+x^2}$. Then we have
$$
widehat{f}(xi) = sqrt{pi}e^{-pi^2xi^2},
$$
and
$$
widehat{g}(xi) = pi e^{-2pi|xi|}.
$$
By Plancherel's theorem, we have
$$begin{eqnarray}
int_{-infty}^{infty} f(x)g(x)dx&=&int_{-infty}^{infty} widehat{f}(xi)widehat{g}(xi)dxi\&=&pi^{frac{3}{2}}int_{-infty}^{infty}e^{-pi^2xi^2-2pi|xi|}dxi\
&=&2pi^{frac{3}{2}}int_{0}^{infty}e^{-pi^2xi^2-2pixi}dxi\
&=&2pi^{frac{3}{2}}eint_{frac{1}{pi}}^{infty}e^{-pi^2xi^2}dxi\
&=&2pi^{frac{1}{2}}eint_{1}^{infty}e^{-xi^2}dxi = pi e operatorname{erfc}(1).
end{eqnarray}$$

This gives $I = frac{pi}{2}e operatorname{erfc}(1).$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks @Song! I was not aware of Plancherel's theorem :-)
    $endgroup$
    – DavidG
    Dec 16 '18 at 3:17










  • $begingroup$
    With respect (as I loved the solution), but if I apply Plancherel's theorem - am I not using residues in disguise? (again, love the solution).
    $endgroup$
    – DavidG
    Dec 20 '18 at 0:38






  • 1




    $begingroup$
    Your concern is legitimate. Perhaps the quickest way to evaluate $widehat{f}$ and $widehat{g}$ is to use complex analysis tools. But the method is still real analytic. We can evaluate $int_{-infty}^infty e^{zx}e^{-x^2}dx,;zinmathbb{C}$ easily using power series expansion. About $widehat{g}$, note that Fourier transform admits the inversion formula. So what we should check is only whether $int_{-infty}^inftywidehat{g}(xi)e^{2 pi ixi x}dxi=g(x)$, and it can be checked directly by evaluating the integral separately on $(-infty,0)$ and $(0,infty)$.
    $endgroup$
    – Song
    Dec 20 '18 at 2:20
















17












17








17





$begingroup$

You can use Plancherel's theorem. Note that
$$
2I = int_{-infty}^{infty} frac{e^{-x^2}}{x^2 + 1}dx.
$$
Let $f(x) = e^{-x^2}$ and $g(x) = frac{1}{1+x^2}$. Then we have
$$
widehat{f}(xi) = sqrt{pi}e^{-pi^2xi^2},
$$
and
$$
widehat{g}(xi) = pi e^{-2pi|xi|}.
$$
By Plancherel's theorem, we have
$$begin{eqnarray}
int_{-infty}^{infty} f(x)g(x)dx&=&int_{-infty}^{infty} widehat{f}(xi)widehat{g}(xi)dxi\&=&pi^{frac{3}{2}}int_{-infty}^{infty}e^{-pi^2xi^2-2pi|xi|}dxi\
&=&2pi^{frac{3}{2}}int_{0}^{infty}e^{-pi^2xi^2-2pixi}dxi\
&=&2pi^{frac{3}{2}}eint_{frac{1}{pi}}^{infty}e^{-pi^2xi^2}dxi\
&=&2pi^{frac{1}{2}}eint_{1}^{infty}e^{-xi^2}dxi = pi e operatorname{erfc}(1).
end{eqnarray}$$

This gives $I = frac{pi}{2}e operatorname{erfc}(1).$






share|cite|improve this answer











$endgroup$



You can use Plancherel's theorem. Note that
$$
2I = int_{-infty}^{infty} frac{e^{-x^2}}{x^2 + 1}dx.
$$
Let $f(x) = e^{-x^2}$ and $g(x) = frac{1}{1+x^2}$. Then we have
$$
widehat{f}(xi) = sqrt{pi}e^{-pi^2xi^2},
$$
and
$$
widehat{g}(xi) = pi e^{-2pi|xi|}.
$$
By Plancherel's theorem, we have
$$begin{eqnarray}
int_{-infty}^{infty} f(x)g(x)dx&=&int_{-infty}^{infty} widehat{f}(xi)widehat{g}(xi)dxi\&=&pi^{frac{3}{2}}int_{-infty}^{infty}e^{-pi^2xi^2-2pi|xi|}dxi\
&=&2pi^{frac{3}{2}}int_{0}^{infty}e^{-pi^2xi^2-2pixi}dxi\
&=&2pi^{frac{3}{2}}eint_{frac{1}{pi}}^{infty}e^{-pi^2xi^2}dxi\
&=&2pi^{frac{1}{2}}eint_{1}^{infty}e^{-xi^2}dxi = pi e operatorname{erfc}(1).
end{eqnarray}$$

This gives $I = frac{pi}{2}e operatorname{erfc}(1).$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 16 '18 at 3:21

























answered Dec 16 '18 at 3:15









SongSong

13.2k632




13.2k632












  • $begingroup$
    Thanks @Song! I was not aware of Plancherel's theorem :-)
    $endgroup$
    – DavidG
    Dec 16 '18 at 3:17










  • $begingroup$
    With respect (as I loved the solution), but if I apply Plancherel's theorem - am I not using residues in disguise? (again, love the solution).
    $endgroup$
    – DavidG
    Dec 20 '18 at 0:38






  • 1




    $begingroup$
    Your concern is legitimate. Perhaps the quickest way to evaluate $widehat{f}$ and $widehat{g}$ is to use complex analysis tools. But the method is still real analytic. We can evaluate $int_{-infty}^infty e^{zx}e^{-x^2}dx,;zinmathbb{C}$ easily using power series expansion. About $widehat{g}$, note that Fourier transform admits the inversion formula. So what we should check is only whether $int_{-infty}^inftywidehat{g}(xi)e^{2 pi ixi x}dxi=g(x)$, and it can be checked directly by evaluating the integral separately on $(-infty,0)$ and $(0,infty)$.
    $endgroup$
    – Song
    Dec 20 '18 at 2:20




















  • $begingroup$
    Thanks @Song! I was not aware of Plancherel's theorem :-)
    $endgroup$
    – DavidG
    Dec 16 '18 at 3:17










  • $begingroup$
    With respect (as I loved the solution), but if I apply Plancherel's theorem - am I not using residues in disguise? (again, love the solution).
    $endgroup$
    – DavidG
    Dec 20 '18 at 0:38






  • 1




    $begingroup$
    Your concern is legitimate. Perhaps the quickest way to evaluate $widehat{f}$ and $widehat{g}$ is to use complex analysis tools. But the method is still real analytic. We can evaluate $int_{-infty}^infty e^{zx}e^{-x^2}dx,;zinmathbb{C}$ easily using power series expansion. About $widehat{g}$, note that Fourier transform admits the inversion formula. So what we should check is only whether $int_{-infty}^inftywidehat{g}(xi)e^{2 pi ixi x}dxi=g(x)$, and it can be checked directly by evaluating the integral separately on $(-infty,0)$ and $(0,infty)$.
    $endgroup$
    – Song
    Dec 20 '18 at 2:20


















$begingroup$
Thanks @Song! I was not aware of Plancherel's theorem :-)
$endgroup$
– DavidG
Dec 16 '18 at 3:17




$begingroup$
Thanks @Song! I was not aware of Plancherel's theorem :-)
$endgroup$
– DavidG
Dec 16 '18 at 3:17












$begingroup$
With respect (as I loved the solution), but if I apply Plancherel's theorem - am I not using residues in disguise? (again, love the solution).
$endgroup$
– DavidG
Dec 20 '18 at 0:38




$begingroup$
With respect (as I loved the solution), but if I apply Plancherel's theorem - am I not using residues in disguise? (again, love the solution).
$endgroup$
– DavidG
Dec 20 '18 at 0:38




1




1




$begingroup$
Your concern is legitimate. Perhaps the quickest way to evaluate $widehat{f}$ and $widehat{g}$ is to use complex analysis tools. But the method is still real analytic. We can evaluate $int_{-infty}^infty e^{zx}e^{-x^2}dx,;zinmathbb{C}$ easily using power series expansion. About $widehat{g}$, note that Fourier transform admits the inversion formula. So what we should check is only whether $int_{-infty}^inftywidehat{g}(xi)e^{2 pi ixi x}dxi=g(x)$, and it can be checked directly by evaluating the integral separately on $(-infty,0)$ and $(0,infty)$.
$endgroup$
– Song
Dec 20 '18 at 2:20






$begingroup$
Your concern is legitimate. Perhaps the quickest way to evaluate $widehat{f}$ and $widehat{g}$ is to use complex analysis tools. But the method is still real analytic. We can evaluate $int_{-infty}^infty e^{zx}e^{-x^2}dx,;zinmathbb{C}$ easily using power series expansion. About $widehat{g}$, note that Fourier transform admits the inversion formula. So what we should check is only whether $int_{-infty}^inftywidehat{g}(xi)e^{2 pi ixi x}dxi=g(x)$, and it can be checked directly by evaluating the integral separately on $(-infty,0)$ and $(0,infty)$.
$endgroup$
– Song
Dec 20 '18 at 2:20













7












$begingroup$

Here is a method that employs the old trick of converting the integral into a double integral.



Observe that
$$frac{1}{1 + x^2} = int_0^infty e^{-u(1 + x^2)} , du.$$
So your integral can be rewritten as
$$I = int_0^infty e^{-x^2} int_0^infty e^{-u(1 + x^2)} , du , dx.$$
or
$$I = int_0^infty e^{-u} int_0^infty e^{-(1 + u)x^2} , dx , du,$$
on changing the order of integration.



Enforcing a substitution of $x mapsto x/sqrt{1 + u}$ gives
$$I = int_0^infty frac{e^{-u}}{sqrt{1 + u}} int_0^infty e^{-x^2} , dx = frac{sqrt{pi}}{2} int_0^infty frac{e^{-u}}{sqrt{1 + u}} , du.$$



Next exforcing a substitution of $u mapsto u^2 - 1$ gives
$$I = sqrt{pi} e int_1^infty e^{-u^2} , du = sqrt{pi} e cdot frac{sqrt{pi}}{2} text{erf} (1) = frac{pi e}{2} text{erf} (1),$$
as expected.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Love it. Still developing my skills with respect to integral ‘expansions’.
    $endgroup$
    – DavidG
    Dec 16 '18 at 10:00










  • $begingroup$
    Is another one of those good techniques to have handy in the integration toolbox.
    $endgroup$
    – omegadot
    Dec 16 '18 at 11:11










  • $begingroup$
    Absolutely. Great technique.
    $endgroup$
    – DavidG
    Dec 16 '18 at 11:12
















7












$begingroup$

Here is a method that employs the old trick of converting the integral into a double integral.



Observe that
$$frac{1}{1 + x^2} = int_0^infty e^{-u(1 + x^2)} , du.$$
So your integral can be rewritten as
$$I = int_0^infty e^{-x^2} int_0^infty e^{-u(1 + x^2)} , du , dx.$$
or
$$I = int_0^infty e^{-u} int_0^infty e^{-(1 + u)x^2} , dx , du,$$
on changing the order of integration.



Enforcing a substitution of $x mapsto x/sqrt{1 + u}$ gives
$$I = int_0^infty frac{e^{-u}}{sqrt{1 + u}} int_0^infty e^{-x^2} , dx = frac{sqrt{pi}}{2} int_0^infty frac{e^{-u}}{sqrt{1 + u}} , du.$$



Next exforcing a substitution of $u mapsto u^2 - 1$ gives
$$I = sqrt{pi} e int_1^infty e^{-u^2} , du = sqrt{pi} e cdot frac{sqrt{pi}}{2} text{erf} (1) = frac{pi e}{2} text{erf} (1),$$
as expected.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Love it. Still developing my skills with respect to integral ‘expansions’.
    $endgroup$
    – DavidG
    Dec 16 '18 at 10:00










  • $begingroup$
    Is another one of those good techniques to have handy in the integration toolbox.
    $endgroup$
    – omegadot
    Dec 16 '18 at 11:11










  • $begingroup$
    Absolutely. Great technique.
    $endgroup$
    – DavidG
    Dec 16 '18 at 11:12














7












7








7





$begingroup$

Here is a method that employs the old trick of converting the integral into a double integral.



Observe that
$$frac{1}{1 + x^2} = int_0^infty e^{-u(1 + x^2)} , du.$$
So your integral can be rewritten as
$$I = int_0^infty e^{-x^2} int_0^infty e^{-u(1 + x^2)} , du , dx.$$
or
$$I = int_0^infty e^{-u} int_0^infty e^{-(1 + u)x^2} , dx , du,$$
on changing the order of integration.



Enforcing a substitution of $x mapsto x/sqrt{1 + u}$ gives
$$I = int_0^infty frac{e^{-u}}{sqrt{1 + u}} int_0^infty e^{-x^2} , dx = frac{sqrt{pi}}{2} int_0^infty frac{e^{-u}}{sqrt{1 + u}} , du.$$



Next exforcing a substitution of $u mapsto u^2 - 1$ gives
$$I = sqrt{pi} e int_1^infty e^{-u^2} , du = sqrt{pi} e cdot frac{sqrt{pi}}{2} text{erf} (1) = frac{pi e}{2} text{erf} (1),$$
as expected.






share|cite|improve this answer









$endgroup$



Here is a method that employs the old trick of converting the integral into a double integral.



Observe that
$$frac{1}{1 + x^2} = int_0^infty e^{-u(1 + x^2)} , du.$$
So your integral can be rewritten as
$$I = int_0^infty e^{-x^2} int_0^infty e^{-u(1 + x^2)} , du , dx.$$
or
$$I = int_0^infty e^{-u} int_0^infty e^{-(1 + u)x^2} , dx , du,$$
on changing the order of integration.



Enforcing a substitution of $x mapsto x/sqrt{1 + u}$ gives
$$I = int_0^infty frac{e^{-u}}{sqrt{1 + u}} int_0^infty e^{-x^2} , dx = frac{sqrt{pi}}{2} int_0^infty frac{e^{-u}}{sqrt{1 + u}} , du.$$



Next exforcing a substitution of $u mapsto u^2 - 1$ gives
$$I = sqrt{pi} e int_1^infty e^{-u^2} , du = sqrt{pi} e cdot frac{sqrt{pi}}{2} text{erf} (1) = frac{pi e}{2} text{erf} (1),$$
as expected.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 16 '18 at 9:56









omegadotomegadot

5,9222828




5,9222828












  • $begingroup$
    Love it. Still developing my skills with respect to integral ‘expansions’.
    $endgroup$
    – DavidG
    Dec 16 '18 at 10:00










  • $begingroup$
    Is another one of those good techniques to have handy in the integration toolbox.
    $endgroup$
    – omegadot
    Dec 16 '18 at 11:11










  • $begingroup$
    Absolutely. Great technique.
    $endgroup$
    – DavidG
    Dec 16 '18 at 11:12


















  • $begingroup$
    Love it. Still developing my skills with respect to integral ‘expansions’.
    $endgroup$
    – DavidG
    Dec 16 '18 at 10:00










  • $begingroup$
    Is another one of those good techniques to have handy in the integration toolbox.
    $endgroup$
    – omegadot
    Dec 16 '18 at 11:11










  • $begingroup$
    Absolutely. Great technique.
    $endgroup$
    – DavidG
    Dec 16 '18 at 11:12
















$begingroup$
Love it. Still developing my skills with respect to integral ‘expansions’.
$endgroup$
– DavidG
Dec 16 '18 at 10:00




$begingroup$
Love it. Still developing my skills with respect to integral ‘expansions’.
$endgroup$
– DavidG
Dec 16 '18 at 10:00












$begingroup$
Is another one of those good techniques to have handy in the integration toolbox.
$endgroup$
– omegadot
Dec 16 '18 at 11:11




$begingroup$
Is another one of those good techniques to have handy in the integration toolbox.
$endgroup$
– omegadot
Dec 16 '18 at 11:11












$begingroup$
Absolutely. Great technique.
$endgroup$
– DavidG
Dec 16 '18 at 11:12




$begingroup$
Absolutely. Great technique.
$endgroup$
– DavidG
Dec 16 '18 at 11:12


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042183%2fmethods-to-solve-int-0-infty-frace-x2x2-1-dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

To store a contact into the json file from server.js file using a class in NodeJS

Redirect URL with Chrome Remote Debugging Android Devices

Dieringhausen