GAMS, how to move a particle on the most efficient way
I am triyng to calculate the route wich takes less time to go from point A to point B in the presence of a constant flow (I. E. a simple version of Zermelo's navigation problem) using the GAMS software. However, if I put both points on a straight line and make the constant flow equal to zero, I don't get the results that I should.
$set n 10
set j /0*%n%/;
sets
jlast(j)
jnotlast(j);
jlast(j)$(ord(j)=card(j))=yes;
jnotlast(j)=not jlast(j);
scalar
v aeroplane velocity /10/
u wind velocity in the x axis /0/
n number of intervals /%n%/
density density /1.225/
variable
gamma(j),
x(j),
y(j),
time,
objective;
positive variable
t(j)
step;
equation
diffx(j),
diffy(j),
obj;
* diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=0.5*(t(j+1)-t(j))*(v*cos(gamma(j+1)) + v*cos(gamma(j)) );
* diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=0.5*(t(j+1)-t(j))*(v*sin(gamma(j+1)) + v*sin(gamma(j)) );
diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=0.5*step*(v*cos(gamma(j+1))-u + v*cos(gamma(j))-u );
diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=0.5*step*(v*sin(gamma(j+1)) + v*sin(gamma(j)) );
obj.. time =e= n*step;
x.fx('0') = 1.0e-12;
x.fx('%n%') = 1.0e-12;
y.fx('0') = 1.0e-12;
y.fx('%n%') = 10;
t.fx('0')= 1.0e-12;
y.up(j) = 10;
y.lo(j) = 1.0e-12;
t.lo(j)=1.0e-12;
gamma.up(j)=pi;
gamma.lo(j)=0;
model brahstron1 /all/;
option
nlp=ipopt;
solve brahstron1 using nlp minimize time;
In this code I have defined two diferential equations, for x'=dx/dt and y'=dy/dt using the trapezoid rule. Here, gamma is our control variable and that's why it's free. Step is the difference between the times j and j+1, that is why time is n (number of intervals)*step(size of interval) and is what I seek to reduce.
Below this one can find the restrictions, these include the initial and final points for x and y, also the initial t=0.
I would spect as a result that the angle gamma became pi/2 and y going between 0 and 10, however, I find weird results, as Y being 5 on all the steps.
I have looked at this code for a while and I cannot find where my mistake is.
Can somebody please tell me what am I doing wrong?
Thank you very much for reading.
optimization gams-math
add a comment |
I am triyng to calculate the route wich takes less time to go from point A to point B in the presence of a constant flow (I. E. a simple version of Zermelo's navigation problem) using the GAMS software. However, if I put both points on a straight line and make the constant flow equal to zero, I don't get the results that I should.
$set n 10
set j /0*%n%/;
sets
jlast(j)
jnotlast(j);
jlast(j)$(ord(j)=card(j))=yes;
jnotlast(j)=not jlast(j);
scalar
v aeroplane velocity /10/
u wind velocity in the x axis /0/
n number of intervals /%n%/
density density /1.225/
variable
gamma(j),
x(j),
y(j),
time,
objective;
positive variable
t(j)
step;
equation
diffx(j),
diffy(j),
obj;
* diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=0.5*(t(j+1)-t(j))*(v*cos(gamma(j+1)) + v*cos(gamma(j)) );
* diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=0.5*(t(j+1)-t(j))*(v*sin(gamma(j+1)) + v*sin(gamma(j)) );
diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=0.5*step*(v*cos(gamma(j+1))-u + v*cos(gamma(j))-u );
diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=0.5*step*(v*sin(gamma(j+1)) + v*sin(gamma(j)) );
obj.. time =e= n*step;
x.fx('0') = 1.0e-12;
x.fx('%n%') = 1.0e-12;
y.fx('0') = 1.0e-12;
y.fx('%n%') = 10;
t.fx('0')= 1.0e-12;
y.up(j) = 10;
y.lo(j) = 1.0e-12;
t.lo(j)=1.0e-12;
gamma.up(j)=pi;
gamma.lo(j)=0;
model brahstron1 /all/;
option
nlp=ipopt;
solve brahstron1 using nlp minimize time;
In this code I have defined two diferential equations, for x'=dx/dt and y'=dy/dt using the trapezoid rule. Here, gamma is our control variable and that's why it's free. Step is the difference between the times j and j+1, that is why time is n (number of intervals)*step(size of interval) and is what I seek to reduce.
Below this one can find the restrictions, these include the initial and final points for x and y, also the initial t=0.
I would spect as a result that the angle gamma became pi/2 and y going between 0 and 10, however, I find weird results, as Y being 5 on all the steps.
I have looked at this code for a while and I cannot find where my mistake is.
Can somebody please tell me what am I doing wrong?
Thank you very much for reading.
optimization gams-math
add a comment |
I am triyng to calculate the route wich takes less time to go from point A to point B in the presence of a constant flow (I. E. a simple version of Zermelo's navigation problem) using the GAMS software. However, if I put both points on a straight line and make the constant flow equal to zero, I don't get the results that I should.
$set n 10
set j /0*%n%/;
sets
jlast(j)
jnotlast(j);
jlast(j)$(ord(j)=card(j))=yes;
jnotlast(j)=not jlast(j);
scalar
v aeroplane velocity /10/
u wind velocity in the x axis /0/
n number of intervals /%n%/
density density /1.225/
variable
gamma(j),
x(j),
y(j),
time,
objective;
positive variable
t(j)
step;
equation
diffx(j),
diffy(j),
obj;
* diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=0.5*(t(j+1)-t(j))*(v*cos(gamma(j+1)) + v*cos(gamma(j)) );
* diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=0.5*(t(j+1)-t(j))*(v*sin(gamma(j+1)) + v*sin(gamma(j)) );
diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=0.5*step*(v*cos(gamma(j+1))-u + v*cos(gamma(j))-u );
diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=0.5*step*(v*sin(gamma(j+1)) + v*sin(gamma(j)) );
obj.. time =e= n*step;
x.fx('0') = 1.0e-12;
x.fx('%n%') = 1.0e-12;
y.fx('0') = 1.0e-12;
y.fx('%n%') = 10;
t.fx('0')= 1.0e-12;
y.up(j) = 10;
y.lo(j) = 1.0e-12;
t.lo(j)=1.0e-12;
gamma.up(j)=pi;
gamma.lo(j)=0;
model brahstron1 /all/;
option
nlp=ipopt;
solve brahstron1 using nlp minimize time;
In this code I have defined two diferential equations, for x'=dx/dt and y'=dy/dt using the trapezoid rule. Here, gamma is our control variable and that's why it's free. Step is the difference between the times j and j+1, that is why time is n (number of intervals)*step(size of interval) and is what I seek to reduce.
Below this one can find the restrictions, these include the initial and final points for x and y, also the initial t=0.
I would spect as a result that the angle gamma became pi/2 and y going between 0 and 10, however, I find weird results, as Y being 5 on all the steps.
I have looked at this code for a while and I cannot find where my mistake is.
Can somebody please tell me what am I doing wrong?
Thank you very much for reading.
optimization gams-math
I am triyng to calculate the route wich takes less time to go from point A to point B in the presence of a constant flow (I. E. a simple version of Zermelo's navigation problem) using the GAMS software. However, if I put both points on a straight line and make the constant flow equal to zero, I don't get the results that I should.
$set n 10
set j /0*%n%/;
sets
jlast(j)
jnotlast(j);
jlast(j)$(ord(j)=card(j))=yes;
jnotlast(j)=not jlast(j);
scalar
v aeroplane velocity /10/
u wind velocity in the x axis /0/
n number of intervals /%n%/
density density /1.225/
variable
gamma(j),
x(j),
y(j),
time,
objective;
positive variable
t(j)
step;
equation
diffx(j),
diffy(j),
obj;
* diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=0.5*(t(j+1)-t(j))*(v*cos(gamma(j+1)) + v*cos(gamma(j)) );
* diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=0.5*(t(j+1)-t(j))*(v*sin(gamma(j+1)) + v*sin(gamma(j)) );
diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=0.5*step*(v*cos(gamma(j+1))-u + v*cos(gamma(j))-u );
diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=0.5*step*(v*sin(gamma(j+1)) + v*sin(gamma(j)) );
obj.. time =e= n*step;
x.fx('0') = 1.0e-12;
x.fx('%n%') = 1.0e-12;
y.fx('0') = 1.0e-12;
y.fx('%n%') = 10;
t.fx('0')= 1.0e-12;
y.up(j) = 10;
y.lo(j) = 1.0e-12;
t.lo(j)=1.0e-12;
gamma.up(j)=pi;
gamma.lo(j)=0;
model brahstron1 /all/;
option
nlp=ipopt;
solve brahstron1 using nlp minimize time;
In this code I have defined two diferential equations, for x'=dx/dt and y'=dy/dt using the trapezoid rule. Here, gamma is our control variable and that's why it's free. Step is the difference between the times j and j+1, that is why time is n (number of intervals)*step(size of interval) and is what I seek to reduce.
Below this one can find the restrictions, these include the initial and final points for x and y, also the initial t=0.
I would spect as a result that the angle gamma became pi/2 and y going between 0 and 10, however, I find weird results, as Y being 5 on all the steps.
I have looked at this code for a while and I cannot find where my mistake is.
Can somebody please tell me what am I doing wrong?
Thank you very much for reading.
optimization gams-math
optimization gams-math
asked Nov 25 '18 at 17:22
slow_learnerslow_learner
135
135
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53469971%2fgams-how-to-move-a-particle-on-the-most-efficient-way%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53469971%2fgams-how-to-move-a-particle-on-the-most-efficient-way%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown