Approximation of a sum with an integral…











up vote
1
down vote

favorite












Let $G$ a continuous function in $C([0,1], mathbb R)$. I think that $$frac{1}{N}sum_{x ;text{odd}in {1,ldots, N}}GBig (frac{x}{N}Big )xrightarrow{Nto +infty}frac{1}{2}int_0^1G(r)dr,$$
and I would like to prove that. I think to do a change of variables as follows:
$$frac{1}{N}sum_{x ;text{odd}in {1,ldots, N}}GBig (frac{x}{N}Big )=frac{1}{N}sum_{k=0}^{frac{N-1}{2}}GBig(frac{2k+1}{N}Big)=frac{1}{2}frac{1}{N}sum_{z=1}^NGBig(zBig),$$
where in the last step I defined $z=2k+1$ and I applied a kind of change of variables for the series that usually holds for integrals ($dk=frac{1}{2}dz$). Is that correct?










share|cite|improve this question






















  • What you wrote is currently not true since $G$ is not defined on $x=2$.
    – Keen-ameteur
    Nov 20 at 15:59










  • The first substitution was already $x=2k+1$ so introducing $z$ will just take you back to the first formula renaming $x$ as $z$. There’s no way to double the number of summands with just a change of variables.
    – Ben
    Nov 20 at 16:16










  • I think you meant “$G(z/N)$” at the end. Still the formula is not true. The question is equivalent to whether sampling the function over odd numerators is equal to summing over even numerators. It’s easy to picture counterexamples to this - a sine function with peaks at even numerators and troughs at odd numerators.
    – Ben
    Nov 20 at 16:20










  • Seeing as the function has to stay constant with $N$, I don't think you can find such a sine function, as it will have to have infinite amounts of peaks.
    – Keen-ameteur
    Nov 20 at 16:47










  • @Keen-amateur The comment above is addressing the case of fixed $N$, as in the question the OP asked about using an analog of the formula for differential forms in the discrete case.
    – Ben
    Nov 20 at 16:55















up vote
1
down vote

favorite












Let $G$ a continuous function in $C([0,1], mathbb R)$. I think that $$frac{1}{N}sum_{x ;text{odd}in {1,ldots, N}}GBig (frac{x}{N}Big )xrightarrow{Nto +infty}frac{1}{2}int_0^1G(r)dr,$$
and I would like to prove that. I think to do a change of variables as follows:
$$frac{1}{N}sum_{x ;text{odd}in {1,ldots, N}}GBig (frac{x}{N}Big )=frac{1}{N}sum_{k=0}^{frac{N-1}{2}}GBig(frac{2k+1}{N}Big)=frac{1}{2}frac{1}{N}sum_{z=1}^NGBig(zBig),$$
where in the last step I defined $z=2k+1$ and I applied a kind of change of variables for the series that usually holds for integrals ($dk=frac{1}{2}dz$). Is that correct?










share|cite|improve this question






















  • What you wrote is currently not true since $G$ is not defined on $x=2$.
    – Keen-ameteur
    Nov 20 at 15:59










  • The first substitution was already $x=2k+1$ so introducing $z$ will just take you back to the first formula renaming $x$ as $z$. There’s no way to double the number of summands with just a change of variables.
    – Ben
    Nov 20 at 16:16










  • I think you meant “$G(z/N)$” at the end. Still the formula is not true. The question is equivalent to whether sampling the function over odd numerators is equal to summing over even numerators. It’s easy to picture counterexamples to this - a sine function with peaks at even numerators and troughs at odd numerators.
    – Ben
    Nov 20 at 16:20










  • Seeing as the function has to stay constant with $N$, I don't think you can find such a sine function, as it will have to have infinite amounts of peaks.
    – Keen-ameteur
    Nov 20 at 16:47










  • @Keen-amateur The comment above is addressing the case of fixed $N$, as in the question the OP asked about using an analog of the formula for differential forms in the discrete case.
    – Ben
    Nov 20 at 16:55













up vote
1
down vote

favorite









up vote
1
down vote

favorite











Let $G$ a continuous function in $C([0,1], mathbb R)$. I think that $$frac{1}{N}sum_{x ;text{odd}in {1,ldots, N}}GBig (frac{x}{N}Big )xrightarrow{Nto +infty}frac{1}{2}int_0^1G(r)dr,$$
and I would like to prove that. I think to do a change of variables as follows:
$$frac{1}{N}sum_{x ;text{odd}in {1,ldots, N}}GBig (frac{x}{N}Big )=frac{1}{N}sum_{k=0}^{frac{N-1}{2}}GBig(frac{2k+1}{N}Big)=frac{1}{2}frac{1}{N}sum_{z=1}^NGBig(zBig),$$
where in the last step I defined $z=2k+1$ and I applied a kind of change of variables for the series that usually holds for integrals ($dk=frac{1}{2}dz$). Is that correct?










share|cite|improve this question













Let $G$ a continuous function in $C([0,1], mathbb R)$. I think that $$frac{1}{N}sum_{x ;text{odd}in {1,ldots, N}}GBig (frac{x}{N}Big )xrightarrow{Nto +infty}frac{1}{2}int_0^1G(r)dr,$$
and I would like to prove that. I think to do a change of variables as follows:
$$frac{1}{N}sum_{x ;text{odd}in {1,ldots, N}}GBig (frac{x}{N}Big )=frac{1}{N}sum_{k=0}^{frac{N-1}{2}}GBig(frac{2k+1}{N}Big)=frac{1}{2}frac{1}{N}sum_{z=1}^NGBig(zBig),$$
where in the last step I defined $z=2k+1$ and I applied a kind of change of variables for the series that usually holds for integrals ($dk=frac{1}{2}dz$). Is that correct?







real-analysis integration definite-integrals approximation-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 20 at 15:32









user495333

916




916












  • What you wrote is currently not true since $G$ is not defined on $x=2$.
    – Keen-ameteur
    Nov 20 at 15:59










  • The first substitution was already $x=2k+1$ so introducing $z$ will just take you back to the first formula renaming $x$ as $z$. There’s no way to double the number of summands with just a change of variables.
    – Ben
    Nov 20 at 16:16










  • I think you meant “$G(z/N)$” at the end. Still the formula is not true. The question is equivalent to whether sampling the function over odd numerators is equal to summing over even numerators. It’s easy to picture counterexamples to this - a sine function with peaks at even numerators and troughs at odd numerators.
    – Ben
    Nov 20 at 16:20










  • Seeing as the function has to stay constant with $N$, I don't think you can find such a sine function, as it will have to have infinite amounts of peaks.
    – Keen-ameteur
    Nov 20 at 16:47










  • @Keen-amateur The comment above is addressing the case of fixed $N$, as in the question the OP asked about using an analog of the formula for differential forms in the discrete case.
    – Ben
    Nov 20 at 16:55


















  • What you wrote is currently not true since $G$ is not defined on $x=2$.
    – Keen-ameteur
    Nov 20 at 15:59










  • The first substitution was already $x=2k+1$ so introducing $z$ will just take you back to the first formula renaming $x$ as $z$. There’s no way to double the number of summands with just a change of variables.
    – Ben
    Nov 20 at 16:16










  • I think you meant “$G(z/N)$” at the end. Still the formula is not true. The question is equivalent to whether sampling the function over odd numerators is equal to summing over even numerators. It’s easy to picture counterexamples to this - a sine function with peaks at even numerators and troughs at odd numerators.
    – Ben
    Nov 20 at 16:20










  • Seeing as the function has to stay constant with $N$, I don't think you can find such a sine function, as it will have to have infinite amounts of peaks.
    – Keen-ameteur
    Nov 20 at 16:47










  • @Keen-amateur The comment above is addressing the case of fixed $N$, as in the question the OP asked about using an analog of the formula for differential forms in the discrete case.
    – Ben
    Nov 20 at 16:55
















What you wrote is currently not true since $G$ is not defined on $x=2$.
– Keen-ameteur
Nov 20 at 15:59




What you wrote is currently not true since $G$ is not defined on $x=2$.
– Keen-ameteur
Nov 20 at 15:59












The first substitution was already $x=2k+1$ so introducing $z$ will just take you back to the first formula renaming $x$ as $z$. There’s no way to double the number of summands with just a change of variables.
– Ben
Nov 20 at 16:16




The first substitution was already $x=2k+1$ so introducing $z$ will just take you back to the first formula renaming $x$ as $z$. There’s no way to double the number of summands with just a change of variables.
– Ben
Nov 20 at 16:16












I think you meant “$G(z/N)$” at the end. Still the formula is not true. The question is equivalent to whether sampling the function over odd numerators is equal to summing over even numerators. It’s easy to picture counterexamples to this - a sine function with peaks at even numerators and troughs at odd numerators.
– Ben
Nov 20 at 16:20




I think you meant “$G(z/N)$” at the end. Still the formula is not true. The question is equivalent to whether sampling the function over odd numerators is equal to summing over even numerators. It’s easy to picture counterexamples to this - a sine function with peaks at even numerators and troughs at odd numerators.
– Ben
Nov 20 at 16:20












Seeing as the function has to stay constant with $N$, I don't think you can find such a sine function, as it will have to have infinite amounts of peaks.
– Keen-ameteur
Nov 20 at 16:47




Seeing as the function has to stay constant with $N$, I don't think you can find such a sine function, as it will have to have infinite amounts of peaks.
– Keen-ameteur
Nov 20 at 16:47












@Keen-amateur The comment above is addressing the case of fixed $N$, as in the question the OP asked about using an analog of the formula for differential forms in the discrete case.
– Ben
Nov 20 at 16:55




@Keen-amateur The comment above is addressing the case of fixed $N$, as in the question the OP asked about using an analog of the formula for differential forms in the discrete case.
– Ben
Nov 20 at 16:55










3 Answers
3






active

oldest

votes

















up vote
0
down vote













It would perhaps be worth recalling that for a sequence of partitions $ Big { 0=y_0^{(m)}< y_1^{(m)}<....< y_{n^{(m)}}^{(m)} =1 Big}_{m=1}^infty $ of $[0,1]$ such that $underset{kin n^{(m)}}{min} vert y_k^{(m)}-y_{k-1}^{(m)} vert overset {mrightarrow infty}{rightarrow}0$, that:



$underset{k=1}{ overset{n^{(m)} }{sum} } G(zeta_k^{(m)}) cdot (y_k^{(m)}-y_{k+1}^{(m)}) overset{mrightarrow infty}{rightarrow} int_0^1 G(t) dt $



where $zeta_k^{(m)}in [y_k^{(m)}, y_{k+1}^{(m)}]$ for all $kin {1,...,n^{(m)} }$.






share|cite|improve this answer




























    up vote
    0
    down vote













    As stated in the comments above, the second formula in the original post is not correct. However, the statement about the limit is still true.



    In the second formula, the use of the change-of-variables formula for differential forms is incorrect. The correct discrete analog of such a formula is as follows. Suppose you have values $z_0,ldots,z_n$ in the domain and you want to calculate the right-hand Riemann sum:



    $$S_n = sum_{i=1}^n G(z_i) Delta z_i$$



    Where $Delta z_i := z_i - z_{i-1}$. Then you may make a change of variable $z_i = 2k_i + 1$. The discrete difference then satisfies $Delta k_i = frac12 Delta z_i$ so that $S_n = 2cdotsum_{i=1}^n G(2k_i+1)Delta k_i$.



    As for the limit formula, you may think of it as a midpoint Riemann sum ($1/N$ is midpoint from $0$ to $2/N$, $3/N$ is the midpoint from $2/N$ to $4/N$, etc.) except $1/N$ has been used when the intervals really have size $2/N$. (Technically the midpoint sum doesn’t work out for $N$ even but this missing term dies in the limit.)






    share|cite|improve this answer






























      up vote
      -1
      down vote













      The points $x/N$ (add $0,1$ if needed) for odd $x$ form a partition of $[0,1]$ with norm $2/N$ and hence the Riemann sum $$frac{2}{N}sum_{xtext{ odd}} G(x/N) $$ tends to $int_{0}^{1}G(r),dr$ as $Ntoinfty $ and the proof of the result in question in complete. Note that the result holds for all Riemann integrable functions $G$ and not just for continuous functions.






      share|cite|improve this answer





















      • The downvote indicates some issue with the post. Let me know if it can be improved in some manner.
        – Paramanand Singh
        Nov 21 at 5:41











      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














       

      draft saved


      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006462%2fapproximation-of-a-sum-with-an-integral%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      0
      down vote













      It would perhaps be worth recalling that for a sequence of partitions $ Big { 0=y_0^{(m)}< y_1^{(m)}<....< y_{n^{(m)}}^{(m)} =1 Big}_{m=1}^infty $ of $[0,1]$ such that $underset{kin n^{(m)}}{min} vert y_k^{(m)}-y_{k-1}^{(m)} vert overset {mrightarrow infty}{rightarrow}0$, that:



      $underset{k=1}{ overset{n^{(m)} }{sum} } G(zeta_k^{(m)}) cdot (y_k^{(m)}-y_{k+1}^{(m)}) overset{mrightarrow infty}{rightarrow} int_0^1 G(t) dt $



      where $zeta_k^{(m)}in [y_k^{(m)}, y_{k+1}^{(m)}]$ for all $kin {1,...,n^{(m)} }$.






      share|cite|improve this answer

























        up vote
        0
        down vote













        It would perhaps be worth recalling that for a sequence of partitions $ Big { 0=y_0^{(m)}< y_1^{(m)}<....< y_{n^{(m)}}^{(m)} =1 Big}_{m=1}^infty $ of $[0,1]$ such that $underset{kin n^{(m)}}{min} vert y_k^{(m)}-y_{k-1}^{(m)} vert overset {mrightarrow infty}{rightarrow}0$, that:



        $underset{k=1}{ overset{n^{(m)} }{sum} } G(zeta_k^{(m)}) cdot (y_k^{(m)}-y_{k+1}^{(m)}) overset{mrightarrow infty}{rightarrow} int_0^1 G(t) dt $



        where $zeta_k^{(m)}in [y_k^{(m)}, y_{k+1}^{(m)}]$ for all $kin {1,...,n^{(m)} }$.






        share|cite|improve this answer























          up vote
          0
          down vote










          up vote
          0
          down vote









          It would perhaps be worth recalling that for a sequence of partitions $ Big { 0=y_0^{(m)}< y_1^{(m)}<....< y_{n^{(m)}}^{(m)} =1 Big}_{m=1}^infty $ of $[0,1]$ such that $underset{kin n^{(m)}}{min} vert y_k^{(m)}-y_{k-1}^{(m)} vert overset {mrightarrow infty}{rightarrow}0$, that:



          $underset{k=1}{ overset{n^{(m)} }{sum} } G(zeta_k^{(m)}) cdot (y_k^{(m)}-y_{k+1}^{(m)}) overset{mrightarrow infty}{rightarrow} int_0^1 G(t) dt $



          where $zeta_k^{(m)}in [y_k^{(m)}, y_{k+1}^{(m)}]$ for all $kin {1,...,n^{(m)} }$.






          share|cite|improve this answer












          It would perhaps be worth recalling that for a sequence of partitions $ Big { 0=y_0^{(m)}< y_1^{(m)}<....< y_{n^{(m)}}^{(m)} =1 Big}_{m=1}^infty $ of $[0,1]$ such that $underset{kin n^{(m)}}{min} vert y_k^{(m)}-y_{k-1}^{(m)} vert overset {mrightarrow infty}{rightarrow}0$, that:



          $underset{k=1}{ overset{n^{(m)} }{sum} } G(zeta_k^{(m)}) cdot (y_k^{(m)}-y_{k+1}^{(m)}) overset{mrightarrow infty}{rightarrow} int_0^1 G(t) dt $



          where $zeta_k^{(m)}in [y_k^{(m)}, y_{k+1}^{(m)}]$ for all $kin {1,...,n^{(m)} }$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 20 at 16:17









          Keen-ameteur

          1,091215




          1,091215






















              up vote
              0
              down vote













              As stated in the comments above, the second formula in the original post is not correct. However, the statement about the limit is still true.



              In the second formula, the use of the change-of-variables formula for differential forms is incorrect. The correct discrete analog of such a formula is as follows. Suppose you have values $z_0,ldots,z_n$ in the domain and you want to calculate the right-hand Riemann sum:



              $$S_n = sum_{i=1}^n G(z_i) Delta z_i$$



              Where $Delta z_i := z_i - z_{i-1}$. Then you may make a change of variable $z_i = 2k_i + 1$. The discrete difference then satisfies $Delta k_i = frac12 Delta z_i$ so that $S_n = 2cdotsum_{i=1}^n G(2k_i+1)Delta k_i$.



              As for the limit formula, you may think of it as a midpoint Riemann sum ($1/N$ is midpoint from $0$ to $2/N$, $3/N$ is the midpoint from $2/N$ to $4/N$, etc.) except $1/N$ has been used when the intervals really have size $2/N$. (Technically the midpoint sum doesn’t work out for $N$ even but this missing term dies in the limit.)






              share|cite|improve this answer



























                up vote
                0
                down vote













                As stated in the comments above, the second formula in the original post is not correct. However, the statement about the limit is still true.



                In the second formula, the use of the change-of-variables formula for differential forms is incorrect. The correct discrete analog of such a formula is as follows. Suppose you have values $z_0,ldots,z_n$ in the domain and you want to calculate the right-hand Riemann sum:



                $$S_n = sum_{i=1}^n G(z_i) Delta z_i$$



                Where $Delta z_i := z_i - z_{i-1}$. Then you may make a change of variable $z_i = 2k_i + 1$. The discrete difference then satisfies $Delta k_i = frac12 Delta z_i$ so that $S_n = 2cdotsum_{i=1}^n G(2k_i+1)Delta k_i$.



                As for the limit formula, you may think of it as a midpoint Riemann sum ($1/N$ is midpoint from $0$ to $2/N$, $3/N$ is the midpoint from $2/N$ to $4/N$, etc.) except $1/N$ has been used when the intervals really have size $2/N$. (Technically the midpoint sum doesn’t work out for $N$ even but this missing term dies in the limit.)






                share|cite|improve this answer

























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  As stated in the comments above, the second formula in the original post is not correct. However, the statement about the limit is still true.



                  In the second formula, the use of the change-of-variables formula for differential forms is incorrect. The correct discrete analog of such a formula is as follows. Suppose you have values $z_0,ldots,z_n$ in the domain and you want to calculate the right-hand Riemann sum:



                  $$S_n = sum_{i=1}^n G(z_i) Delta z_i$$



                  Where $Delta z_i := z_i - z_{i-1}$. Then you may make a change of variable $z_i = 2k_i + 1$. The discrete difference then satisfies $Delta k_i = frac12 Delta z_i$ so that $S_n = 2cdotsum_{i=1}^n G(2k_i+1)Delta k_i$.



                  As for the limit formula, you may think of it as a midpoint Riemann sum ($1/N$ is midpoint from $0$ to $2/N$, $3/N$ is the midpoint from $2/N$ to $4/N$, etc.) except $1/N$ has been used when the intervals really have size $2/N$. (Technically the midpoint sum doesn’t work out for $N$ even but this missing term dies in the limit.)






                  share|cite|improve this answer














                  As stated in the comments above, the second formula in the original post is not correct. However, the statement about the limit is still true.



                  In the second formula, the use of the change-of-variables formula for differential forms is incorrect. The correct discrete analog of such a formula is as follows. Suppose you have values $z_0,ldots,z_n$ in the domain and you want to calculate the right-hand Riemann sum:



                  $$S_n = sum_{i=1}^n G(z_i) Delta z_i$$



                  Where $Delta z_i := z_i - z_{i-1}$. Then you may make a change of variable $z_i = 2k_i + 1$. The discrete difference then satisfies $Delta k_i = frac12 Delta z_i$ so that $S_n = 2cdotsum_{i=1}^n G(2k_i+1)Delta k_i$.



                  As for the limit formula, you may think of it as a midpoint Riemann sum ($1/N$ is midpoint from $0$ to $2/N$, $3/N$ is the midpoint from $2/N$ to $4/N$, etc.) except $1/N$ has been used when the intervals really have size $2/N$. (Technically the midpoint sum doesn’t work out for $N$ even but this missing term dies in the limit.)







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Nov 22 at 6:31

























                  answered Nov 20 at 16:49









                  Ben

                  1,971616




                  1,971616






















                      up vote
                      -1
                      down vote













                      The points $x/N$ (add $0,1$ if needed) for odd $x$ form a partition of $[0,1]$ with norm $2/N$ and hence the Riemann sum $$frac{2}{N}sum_{xtext{ odd}} G(x/N) $$ tends to $int_{0}^{1}G(r),dr$ as $Ntoinfty $ and the proof of the result in question in complete. Note that the result holds for all Riemann integrable functions $G$ and not just for continuous functions.






                      share|cite|improve this answer





















                      • The downvote indicates some issue with the post. Let me know if it can be improved in some manner.
                        – Paramanand Singh
                        Nov 21 at 5:41















                      up vote
                      -1
                      down vote













                      The points $x/N$ (add $0,1$ if needed) for odd $x$ form a partition of $[0,1]$ with norm $2/N$ and hence the Riemann sum $$frac{2}{N}sum_{xtext{ odd}} G(x/N) $$ tends to $int_{0}^{1}G(r),dr$ as $Ntoinfty $ and the proof of the result in question in complete. Note that the result holds for all Riemann integrable functions $G$ and not just for continuous functions.






                      share|cite|improve this answer





















                      • The downvote indicates some issue with the post. Let me know if it can be improved in some manner.
                        – Paramanand Singh
                        Nov 21 at 5:41













                      up vote
                      -1
                      down vote










                      up vote
                      -1
                      down vote









                      The points $x/N$ (add $0,1$ if needed) for odd $x$ form a partition of $[0,1]$ with norm $2/N$ and hence the Riemann sum $$frac{2}{N}sum_{xtext{ odd}} G(x/N) $$ tends to $int_{0}^{1}G(r),dr$ as $Ntoinfty $ and the proof of the result in question in complete. Note that the result holds for all Riemann integrable functions $G$ and not just for continuous functions.






                      share|cite|improve this answer












                      The points $x/N$ (add $0,1$ if needed) for odd $x$ form a partition of $[0,1]$ with norm $2/N$ and hence the Riemann sum $$frac{2}{N}sum_{xtext{ odd}} G(x/N) $$ tends to $int_{0}^{1}G(r),dr$ as $Ntoinfty $ and the proof of the result in question in complete. Note that the result holds for all Riemann integrable functions $G$ and not just for continuous functions.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Nov 20 at 16:49









                      Paramanand Singh

                      48.1k555156




                      48.1k555156












                      • The downvote indicates some issue with the post. Let me know if it can be improved in some manner.
                        – Paramanand Singh
                        Nov 21 at 5:41


















                      • The downvote indicates some issue with the post. Let me know if it can be improved in some manner.
                        – Paramanand Singh
                        Nov 21 at 5:41
















                      The downvote indicates some issue with the post. Let me know if it can be improved in some manner.
                      – Paramanand Singh
                      Nov 21 at 5:41




                      The downvote indicates some issue with the post. Let me know if it can be improved in some manner.
                      – Paramanand Singh
                      Nov 21 at 5:41


















                       

                      draft saved


                      draft discarded



















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006462%2fapproximation-of-a-sum-with-an-integral%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Wiesbaden

                      Marschland

                      Dieringhausen