Measure on a sigma-algebra with integral
up vote
0
down vote
favorite
Let $mu$ be a measure on $(X, mathcal{A})$ and a measurable function $f:X to mathbb{R}, f geq 0$.
Define $mu_f(E): mathcal{A} to mathbb{R}, mu_f(E):=int_E f dmu$ for $E in mathcal{A}$.
How to prove that $mu_f$ is a measure on the sigma-algebra $mathcal{A}$?
I tried it with:
$mu_f(emptyset)=int_emptyset f dmu = 0$.
I'm not sure if this is right.
For the countable additivity I don't know how to show that
$mu_f(cup^{i=1}_{infty}E_i)=sum_{i in I}{mu_f(E_i)}$.
measure-theory lebesgue-integral
add a comment |
up vote
0
down vote
favorite
Let $mu$ be a measure on $(X, mathcal{A})$ and a measurable function $f:X to mathbb{R}, f geq 0$.
Define $mu_f(E): mathcal{A} to mathbb{R}, mu_f(E):=int_E f dmu$ for $E in mathcal{A}$.
How to prove that $mu_f$ is a measure on the sigma-algebra $mathcal{A}$?
I tried it with:
$mu_f(emptyset)=int_emptyset f dmu = 0$.
I'm not sure if this is right.
For the countable additivity I don't know how to show that
$mu_f(cup^{i=1}_{infty}E_i)=sum_{i in I}{mu_f(E_i)}$.
measure-theory lebesgue-integral
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $mu$ be a measure on $(X, mathcal{A})$ and a measurable function $f:X to mathbb{R}, f geq 0$.
Define $mu_f(E): mathcal{A} to mathbb{R}, mu_f(E):=int_E f dmu$ for $E in mathcal{A}$.
How to prove that $mu_f$ is a measure on the sigma-algebra $mathcal{A}$?
I tried it with:
$mu_f(emptyset)=int_emptyset f dmu = 0$.
I'm not sure if this is right.
For the countable additivity I don't know how to show that
$mu_f(cup^{i=1}_{infty}E_i)=sum_{i in I}{mu_f(E_i)}$.
measure-theory lebesgue-integral
Let $mu$ be a measure on $(X, mathcal{A})$ and a measurable function $f:X to mathbb{R}, f geq 0$.
Define $mu_f(E): mathcal{A} to mathbb{R}, mu_f(E):=int_E f dmu$ for $E in mathcal{A}$.
How to prove that $mu_f$ is a measure on the sigma-algebra $mathcal{A}$?
I tried it with:
$mu_f(emptyset)=int_emptyset f dmu = 0$.
I'm not sure if this is right.
For the countable additivity I don't know how to show that
$mu_f(cup^{i=1}_{infty}E_i)=sum_{i in I}{mu_f(E_i)}$.
measure-theory lebesgue-integral
measure-theory lebesgue-integral
edited Nov 20 at 15:19
asked Nov 18 at 16:03
Tartulop
534
534
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
$$mu_f(varnothing)=int_{varnothing}f;dmu=intmathbf1_{varnothing}f;dmu=int0;dmu=0$$
Further be aware that we always have $intsum_{i=1}^{infty}g_i;dmu=sum_{i=1}^{infty}int g_i;dmu$ if the $g_i$ are measurable and nonnegative.
By disjoint and measurable $E_i$ moreover we have $mathbf1_{bigcup_{i=1}^{infty}E_i}=sum_{i=1}^{infty}intmathbf1_{E_i}$ so that:
$$mu_f(bigcup_{i=1}^{infty}E_i)=int_{bigcup_{i=1}^{infty}E_i}f;dmu=intmathbf1_{bigcup_{i=1}^{infty}E_i}f;dmu=intsum_{i=1}^{infty}mathbf1_{E_i}f;dmu=sum_{i=1}^{infty}intmathbf1_{E_i}f;dmu=$$$$sum_{i=1}^{infty}mu_f(E_i)$$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
$$mu_f(varnothing)=int_{varnothing}f;dmu=intmathbf1_{varnothing}f;dmu=int0;dmu=0$$
Further be aware that we always have $intsum_{i=1}^{infty}g_i;dmu=sum_{i=1}^{infty}int g_i;dmu$ if the $g_i$ are measurable and nonnegative.
By disjoint and measurable $E_i$ moreover we have $mathbf1_{bigcup_{i=1}^{infty}E_i}=sum_{i=1}^{infty}intmathbf1_{E_i}$ so that:
$$mu_f(bigcup_{i=1}^{infty}E_i)=int_{bigcup_{i=1}^{infty}E_i}f;dmu=intmathbf1_{bigcup_{i=1}^{infty}E_i}f;dmu=intsum_{i=1}^{infty}mathbf1_{E_i}f;dmu=sum_{i=1}^{infty}intmathbf1_{E_i}f;dmu=$$$$sum_{i=1}^{infty}mu_f(E_i)$$
add a comment |
up vote
0
down vote
accepted
$$mu_f(varnothing)=int_{varnothing}f;dmu=intmathbf1_{varnothing}f;dmu=int0;dmu=0$$
Further be aware that we always have $intsum_{i=1}^{infty}g_i;dmu=sum_{i=1}^{infty}int g_i;dmu$ if the $g_i$ are measurable and nonnegative.
By disjoint and measurable $E_i$ moreover we have $mathbf1_{bigcup_{i=1}^{infty}E_i}=sum_{i=1}^{infty}intmathbf1_{E_i}$ so that:
$$mu_f(bigcup_{i=1}^{infty}E_i)=int_{bigcup_{i=1}^{infty}E_i}f;dmu=intmathbf1_{bigcup_{i=1}^{infty}E_i}f;dmu=intsum_{i=1}^{infty}mathbf1_{E_i}f;dmu=sum_{i=1}^{infty}intmathbf1_{E_i}f;dmu=$$$$sum_{i=1}^{infty}mu_f(E_i)$$
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
$$mu_f(varnothing)=int_{varnothing}f;dmu=intmathbf1_{varnothing}f;dmu=int0;dmu=0$$
Further be aware that we always have $intsum_{i=1}^{infty}g_i;dmu=sum_{i=1}^{infty}int g_i;dmu$ if the $g_i$ are measurable and nonnegative.
By disjoint and measurable $E_i$ moreover we have $mathbf1_{bigcup_{i=1}^{infty}E_i}=sum_{i=1}^{infty}intmathbf1_{E_i}$ so that:
$$mu_f(bigcup_{i=1}^{infty}E_i)=int_{bigcup_{i=1}^{infty}E_i}f;dmu=intmathbf1_{bigcup_{i=1}^{infty}E_i}f;dmu=intsum_{i=1}^{infty}mathbf1_{E_i}f;dmu=sum_{i=1}^{infty}intmathbf1_{E_i}f;dmu=$$$$sum_{i=1}^{infty}mu_f(E_i)$$
$$mu_f(varnothing)=int_{varnothing}f;dmu=intmathbf1_{varnothing}f;dmu=int0;dmu=0$$
Further be aware that we always have $intsum_{i=1}^{infty}g_i;dmu=sum_{i=1}^{infty}int g_i;dmu$ if the $g_i$ are measurable and nonnegative.
By disjoint and measurable $E_i$ moreover we have $mathbf1_{bigcup_{i=1}^{infty}E_i}=sum_{i=1}^{infty}intmathbf1_{E_i}$ so that:
$$mu_f(bigcup_{i=1}^{infty}E_i)=int_{bigcup_{i=1}^{infty}E_i}f;dmu=intmathbf1_{bigcup_{i=1}^{infty}E_i}f;dmu=intsum_{i=1}^{infty}mathbf1_{E_i}f;dmu=sum_{i=1}^{infty}intmathbf1_{E_i}f;dmu=$$$$sum_{i=1}^{infty}mu_f(E_i)$$
answered Nov 18 at 16:16
drhab
94.7k543125
94.7k543125
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003719%2fmeasure-on-a-sigma-algebra-with-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown