Measure on a sigma-algebra with integral











up vote
0
down vote

favorite












Let $mu$ be a measure on $(X, mathcal{A})$ and a measurable function $f:X to mathbb{R}, f geq 0$.



Define $mu_f(E): mathcal{A} to mathbb{R}, mu_f(E):=int_E f dmu$ for $E in mathcal{A}$.



How to prove that $mu_f$ is a measure on the sigma-algebra $mathcal{A}$?



I tried it with:



$mu_f(emptyset)=int_emptyset f dmu = 0$.



I'm not sure if this is right.



For the countable additivity I don't know how to show that



$mu_f(cup^{i=1}_{infty}E_i)=sum_{i in I}{mu_f(E_i)}$.










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    Let $mu$ be a measure on $(X, mathcal{A})$ and a measurable function $f:X to mathbb{R}, f geq 0$.



    Define $mu_f(E): mathcal{A} to mathbb{R}, mu_f(E):=int_E f dmu$ for $E in mathcal{A}$.



    How to prove that $mu_f$ is a measure on the sigma-algebra $mathcal{A}$?



    I tried it with:



    $mu_f(emptyset)=int_emptyset f dmu = 0$.



    I'm not sure if this is right.



    For the countable additivity I don't know how to show that



    $mu_f(cup^{i=1}_{infty}E_i)=sum_{i in I}{mu_f(E_i)}$.










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Let $mu$ be a measure on $(X, mathcal{A})$ and a measurable function $f:X to mathbb{R}, f geq 0$.



      Define $mu_f(E): mathcal{A} to mathbb{R}, mu_f(E):=int_E f dmu$ for $E in mathcal{A}$.



      How to prove that $mu_f$ is a measure on the sigma-algebra $mathcal{A}$?



      I tried it with:



      $mu_f(emptyset)=int_emptyset f dmu = 0$.



      I'm not sure if this is right.



      For the countable additivity I don't know how to show that



      $mu_f(cup^{i=1}_{infty}E_i)=sum_{i in I}{mu_f(E_i)}$.










      share|cite|improve this question















      Let $mu$ be a measure on $(X, mathcal{A})$ and a measurable function $f:X to mathbb{R}, f geq 0$.



      Define $mu_f(E): mathcal{A} to mathbb{R}, mu_f(E):=int_E f dmu$ for $E in mathcal{A}$.



      How to prove that $mu_f$ is a measure on the sigma-algebra $mathcal{A}$?



      I tried it with:



      $mu_f(emptyset)=int_emptyset f dmu = 0$.



      I'm not sure if this is right.



      For the countable additivity I don't know how to show that



      $mu_f(cup^{i=1}_{infty}E_i)=sum_{i in I}{mu_f(E_i)}$.







      measure-theory lebesgue-integral






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 20 at 15:19

























      asked Nov 18 at 16:03









      Tartulop

      534




      534






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          $$mu_f(varnothing)=int_{varnothing}f;dmu=intmathbf1_{varnothing}f;dmu=int0;dmu=0$$



          Further be aware that we always have $intsum_{i=1}^{infty}g_i;dmu=sum_{i=1}^{infty}int g_i;dmu$ if the $g_i$ are measurable and nonnegative.



          By disjoint and measurable $E_i$ moreover we have $mathbf1_{bigcup_{i=1}^{infty}E_i}=sum_{i=1}^{infty}intmathbf1_{E_i}$ so that:



          $$mu_f(bigcup_{i=1}^{infty}E_i)=int_{bigcup_{i=1}^{infty}E_i}f;dmu=intmathbf1_{bigcup_{i=1}^{infty}E_i}f;dmu=intsum_{i=1}^{infty}mathbf1_{E_i}f;dmu=sum_{i=1}^{infty}intmathbf1_{E_i}f;dmu=$$$$sum_{i=1}^{infty}mu_f(E_i)$$






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003719%2fmeasure-on-a-sigma-algebra-with-integral%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote



            accepted










            $$mu_f(varnothing)=int_{varnothing}f;dmu=intmathbf1_{varnothing}f;dmu=int0;dmu=0$$



            Further be aware that we always have $intsum_{i=1}^{infty}g_i;dmu=sum_{i=1}^{infty}int g_i;dmu$ if the $g_i$ are measurable and nonnegative.



            By disjoint and measurable $E_i$ moreover we have $mathbf1_{bigcup_{i=1}^{infty}E_i}=sum_{i=1}^{infty}intmathbf1_{E_i}$ so that:



            $$mu_f(bigcup_{i=1}^{infty}E_i)=int_{bigcup_{i=1}^{infty}E_i}f;dmu=intmathbf1_{bigcup_{i=1}^{infty}E_i}f;dmu=intsum_{i=1}^{infty}mathbf1_{E_i}f;dmu=sum_{i=1}^{infty}intmathbf1_{E_i}f;dmu=$$$$sum_{i=1}^{infty}mu_f(E_i)$$






            share|cite|improve this answer

























              up vote
              0
              down vote



              accepted










              $$mu_f(varnothing)=int_{varnothing}f;dmu=intmathbf1_{varnothing}f;dmu=int0;dmu=0$$



              Further be aware that we always have $intsum_{i=1}^{infty}g_i;dmu=sum_{i=1}^{infty}int g_i;dmu$ if the $g_i$ are measurable and nonnegative.



              By disjoint and measurable $E_i$ moreover we have $mathbf1_{bigcup_{i=1}^{infty}E_i}=sum_{i=1}^{infty}intmathbf1_{E_i}$ so that:



              $$mu_f(bigcup_{i=1}^{infty}E_i)=int_{bigcup_{i=1}^{infty}E_i}f;dmu=intmathbf1_{bigcup_{i=1}^{infty}E_i}f;dmu=intsum_{i=1}^{infty}mathbf1_{E_i}f;dmu=sum_{i=1}^{infty}intmathbf1_{E_i}f;dmu=$$$$sum_{i=1}^{infty}mu_f(E_i)$$






              share|cite|improve this answer























                up vote
                0
                down vote



                accepted







                up vote
                0
                down vote



                accepted






                $$mu_f(varnothing)=int_{varnothing}f;dmu=intmathbf1_{varnothing}f;dmu=int0;dmu=0$$



                Further be aware that we always have $intsum_{i=1}^{infty}g_i;dmu=sum_{i=1}^{infty}int g_i;dmu$ if the $g_i$ are measurable and nonnegative.



                By disjoint and measurable $E_i$ moreover we have $mathbf1_{bigcup_{i=1}^{infty}E_i}=sum_{i=1}^{infty}intmathbf1_{E_i}$ so that:



                $$mu_f(bigcup_{i=1}^{infty}E_i)=int_{bigcup_{i=1}^{infty}E_i}f;dmu=intmathbf1_{bigcup_{i=1}^{infty}E_i}f;dmu=intsum_{i=1}^{infty}mathbf1_{E_i}f;dmu=sum_{i=1}^{infty}intmathbf1_{E_i}f;dmu=$$$$sum_{i=1}^{infty}mu_f(E_i)$$






                share|cite|improve this answer












                $$mu_f(varnothing)=int_{varnothing}f;dmu=intmathbf1_{varnothing}f;dmu=int0;dmu=0$$



                Further be aware that we always have $intsum_{i=1}^{infty}g_i;dmu=sum_{i=1}^{infty}int g_i;dmu$ if the $g_i$ are measurable and nonnegative.



                By disjoint and measurable $E_i$ moreover we have $mathbf1_{bigcup_{i=1}^{infty}E_i}=sum_{i=1}^{infty}intmathbf1_{E_i}$ so that:



                $$mu_f(bigcup_{i=1}^{infty}E_i)=int_{bigcup_{i=1}^{infty}E_i}f;dmu=intmathbf1_{bigcup_{i=1}^{infty}E_i}f;dmu=intsum_{i=1}^{infty}mathbf1_{E_i}f;dmu=sum_{i=1}^{infty}intmathbf1_{E_i}f;dmu=$$$$sum_{i=1}^{infty}mu_f(E_i)$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 18 at 16:16









                drhab

                94.7k543125




                94.7k543125






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003719%2fmeasure-on-a-sigma-algebra-with-integral%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen