What is the remainder of $3^{13} div 25$ by hand using Euler's theorem?
up vote
1
down vote
favorite
Well, I know how to solve this problem by using some basic stuff:
$3^3 equiv 2 rightarrow 3^{12} equiv 2^4 rightarrow 3^{13} equiv 48equiv 23pmod{25}$
But what I'm trying to do is to solve this ONLY using Euler's theorem.
What I tried was (all congruences are in mod 25):
$phi(25)=20, space rightarrow 3^{13}equiv3^{13mod{phi(25)}}equiv3^{13mod20}$
which still gives me $3^{13}$ and there's no way I could calculate that.
So I tried to raise both sides of the starting equation to the power of two so I get something easier to calculate:
$3^{26}equiv x^2 equiv 3^{26mod20}equiv3^6$ and then $3^6equiv(3^{3})^2equiv27^2equiv2^2equiv4$ therefore $x^2=4 rightarrow x=2,-2$, hence $3^{13} equiv 2$ or $3^{13}equiv23$ (And we know that the correct answer is 23)
We can verify which one of $2$ and $23$ is the correct answer using Euler's theorem $a^{phi(n)}equiv1pmod{n}$ but I'm trying to find a shorter, possibly smarter answer which DOES use Euler's theorem. Any thoughts?
modular-arithmetic totient-function
add a comment |
up vote
1
down vote
favorite
Well, I know how to solve this problem by using some basic stuff:
$3^3 equiv 2 rightarrow 3^{12} equiv 2^4 rightarrow 3^{13} equiv 48equiv 23pmod{25}$
But what I'm trying to do is to solve this ONLY using Euler's theorem.
What I tried was (all congruences are in mod 25):
$phi(25)=20, space rightarrow 3^{13}equiv3^{13mod{phi(25)}}equiv3^{13mod20}$
which still gives me $3^{13}$ and there's no way I could calculate that.
So I tried to raise both sides of the starting equation to the power of two so I get something easier to calculate:
$3^{26}equiv x^2 equiv 3^{26mod20}equiv3^6$ and then $3^6equiv(3^{3})^2equiv27^2equiv2^2equiv4$ therefore $x^2=4 rightarrow x=2,-2$, hence $3^{13} equiv 2$ or $3^{13}equiv23$ (And we know that the correct answer is 23)
We can verify which one of $2$ and $23$ is the correct answer using Euler's theorem $a^{phi(n)}equiv1pmod{n}$ but I'm trying to find a shorter, possibly smarter answer which DOES use Euler's theorem. Any thoughts?
modular-arithmetic totient-function
$!!bmod 25!: 3^{large 20}equiv 1,Rightarrow,3^{large 10}equiv pm1,,$ must be $-1$ to be correct $!bmod 5. $ Equivalently, check your $2$ cases $!bmod 5 $
– Bill Dubuque
Nov 20 at 16:57
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Well, I know how to solve this problem by using some basic stuff:
$3^3 equiv 2 rightarrow 3^{12} equiv 2^4 rightarrow 3^{13} equiv 48equiv 23pmod{25}$
But what I'm trying to do is to solve this ONLY using Euler's theorem.
What I tried was (all congruences are in mod 25):
$phi(25)=20, space rightarrow 3^{13}equiv3^{13mod{phi(25)}}equiv3^{13mod20}$
which still gives me $3^{13}$ and there's no way I could calculate that.
So I tried to raise both sides of the starting equation to the power of two so I get something easier to calculate:
$3^{26}equiv x^2 equiv 3^{26mod20}equiv3^6$ and then $3^6equiv(3^{3})^2equiv27^2equiv2^2equiv4$ therefore $x^2=4 rightarrow x=2,-2$, hence $3^{13} equiv 2$ or $3^{13}equiv23$ (And we know that the correct answer is 23)
We can verify which one of $2$ and $23$ is the correct answer using Euler's theorem $a^{phi(n)}equiv1pmod{n}$ but I'm trying to find a shorter, possibly smarter answer which DOES use Euler's theorem. Any thoughts?
modular-arithmetic totient-function
Well, I know how to solve this problem by using some basic stuff:
$3^3 equiv 2 rightarrow 3^{12} equiv 2^4 rightarrow 3^{13} equiv 48equiv 23pmod{25}$
But what I'm trying to do is to solve this ONLY using Euler's theorem.
What I tried was (all congruences are in mod 25):
$phi(25)=20, space rightarrow 3^{13}equiv3^{13mod{phi(25)}}equiv3^{13mod20}$
which still gives me $3^{13}$ and there's no way I could calculate that.
So I tried to raise both sides of the starting equation to the power of two so I get something easier to calculate:
$3^{26}equiv x^2 equiv 3^{26mod20}equiv3^6$ and then $3^6equiv(3^{3})^2equiv27^2equiv2^2equiv4$ therefore $x^2=4 rightarrow x=2,-2$, hence $3^{13} equiv 2$ or $3^{13}equiv23$ (And we know that the correct answer is 23)
We can verify which one of $2$ and $23$ is the correct answer using Euler's theorem $a^{phi(n)}equiv1pmod{n}$ but I'm trying to find a shorter, possibly smarter answer which DOES use Euler's theorem. Any thoughts?
modular-arithmetic totient-function
modular-arithmetic totient-function
edited Nov 20 at 16:03
amWhy
191k27223437
191k27223437
asked Nov 20 at 15:51
Sean Goudarzi
1375
1375
$!!bmod 25!: 3^{large 20}equiv 1,Rightarrow,3^{large 10}equiv pm1,,$ must be $-1$ to be correct $!bmod 5. $ Equivalently, check your $2$ cases $!bmod 5 $
– Bill Dubuque
Nov 20 at 16:57
add a comment |
$!!bmod 25!: 3^{large 20}equiv 1,Rightarrow,3^{large 10}equiv pm1,,$ must be $-1$ to be correct $!bmod 5. $ Equivalently, check your $2$ cases $!bmod 5 $
– Bill Dubuque
Nov 20 at 16:57
$!!bmod 25!: 3^{large 20}equiv 1,Rightarrow,3^{large 10}equiv pm1,,$ must be $-1$ to be correct $!bmod 5. $ Equivalently, check your $2$ cases $!bmod 5 $
– Bill Dubuque
Nov 20 at 16:57
$!!bmod 25!: 3^{large 20}equiv 1,Rightarrow,3^{large 10}equiv pm1,,$ must be $-1$ to be correct $!bmod 5. $ Equivalently, check your $2$ cases $!bmod 5 $
– Bill Dubuque
Nov 20 at 16:57
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
You've already used Euler's theorem to show that $3^{13}equiv2pmod{25}$ or $3^{13}equiv23pmod{25}$, as
$$(3^{13})^2equiv3^{26}equiv3^{26mod{phi(25)}}equiv3^{26mod{20}}equiv3^6equiv4pmod{25}.$$
You can use Euler's theorem mod $5$ to finish the proof; you know that
$$3^{13}equiv3^{13mod{phi(5)}}equiv3^{13mod{4}}equiv3^1pmod{5},$$
and hence $3^{13}equiv23pmod{25}$.
1
I don't understand the second part, $3^{13}equiv23pmod{25}$, is there any property that I'm missing in modular arithmetics? What I conclude from the first expression is that $3^{13}$ divided by 25 could be any number from {3, 8, 13, 18, 23}
– Sean Goudarzi
Nov 20 at 16:07
I was assuming the work you showed in your question already; let me expand my answer to clarify this.
– Servaes
Nov 20 at 16:26
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
You've already used Euler's theorem to show that $3^{13}equiv2pmod{25}$ or $3^{13}equiv23pmod{25}$, as
$$(3^{13})^2equiv3^{26}equiv3^{26mod{phi(25)}}equiv3^{26mod{20}}equiv3^6equiv4pmod{25}.$$
You can use Euler's theorem mod $5$ to finish the proof; you know that
$$3^{13}equiv3^{13mod{phi(5)}}equiv3^{13mod{4}}equiv3^1pmod{5},$$
and hence $3^{13}equiv23pmod{25}$.
1
I don't understand the second part, $3^{13}equiv23pmod{25}$, is there any property that I'm missing in modular arithmetics? What I conclude from the first expression is that $3^{13}$ divided by 25 could be any number from {3, 8, 13, 18, 23}
– Sean Goudarzi
Nov 20 at 16:07
I was assuming the work you showed in your question already; let me expand my answer to clarify this.
– Servaes
Nov 20 at 16:26
add a comment |
up vote
1
down vote
accepted
You've already used Euler's theorem to show that $3^{13}equiv2pmod{25}$ or $3^{13}equiv23pmod{25}$, as
$$(3^{13})^2equiv3^{26}equiv3^{26mod{phi(25)}}equiv3^{26mod{20}}equiv3^6equiv4pmod{25}.$$
You can use Euler's theorem mod $5$ to finish the proof; you know that
$$3^{13}equiv3^{13mod{phi(5)}}equiv3^{13mod{4}}equiv3^1pmod{5},$$
and hence $3^{13}equiv23pmod{25}$.
1
I don't understand the second part, $3^{13}equiv23pmod{25}$, is there any property that I'm missing in modular arithmetics? What I conclude from the first expression is that $3^{13}$ divided by 25 could be any number from {3, 8, 13, 18, 23}
– Sean Goudarzi
Nov 20 at 16:07
I was assuming the work you showed in your question already; let me expand my answer to clarify this.
– Servaes
Nov 20 at 16:26
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
You've already used Euler's theorem to show that $3^{13}equiv2pmod{25}$ or $3^{13}equiv23pmod{25}$, as
$$(3^{13})^2equiv3^{26}equiv3^{26mod{phi(25)}}equiv3^{26mod{20}}equiv3^6equiv4pmod{25}.$$
You can use Euler's theorem mod $5$ to finish the proof; you know that
$$3^{13}equiv3^{13mod{phi(5)}}equiv3^{13mod{4}}equiv3^1pmod{5},$$
and hence $3^{13}equiv23pmod{25}$.
You've already used Euler's theorem to show that $3^{13}equiv2pmod{25}$ or $3^{13}equiv23pmod{25}$, as
$$(3^{13})^2equiv3^{26}equiv3^{26mod{phi(25)}}equiv3^{26mod{20}}equiv3^6equiv4pmod{25}.$$
You can use Euler's theorem mod $5$ to finish the proof; you know that
$$3^{13}equiv3^{13mod{phi(5)}}equiv3^{13mod{4}}equiv3^1pmod{5},$$
and hence $3^{13}equiv23pmod{25}$.
edited Nov 20 at 16:28
answered Nov 20 at 15:54
Servaes
20.6k33789
20.6k33789
1
I don't understand the second part, $3^{13}equiv23pmod{25}$, is there any property that I'm missing in modular arithmetics? What I conclude from the first expression is that $3^{13}$ divided by 25 could be any number from {3, 8, 13, 18, 23}
– Sean Goudarzi
Nov 20 at 16:07
I was assuming the work you showed in your question already; let me expand my answer to clarify this.
– Servaes
Nov 20 at 16:26
add a comment |
1
I don't understand the second part, $3^{13}equiv23pmod{25}$, is there any property that I'm missing in modular arithmetics? What I conclude from the first expression is that $3^{13}$ divided by 25 could be any number from {3, 8, 13, 18, 23}
– Sean Goudarzi
Nov 20 at 16:07
I was assuming the work you showed in your question already; let me expand my answer to clarify this.
– Servaes
Nov 20 at 16:26
1
1
I don't understand the second part, $3^{13}equiv23pmod{25}$, is there any property that I'm missing in modular arithmetics? What I conclude from the first expression is that $3^{13}$ divided by 25 could be any number from {3, 8, 13, 18, 23}
– Sean Goudarzi
Nov 20 at 16:07
I don't understand the second part, $3^{13}equiv23pmod{25}$, is there any property that I'm missing in modular arithmetics? What I conclude from the first expression is that $3^{13}$ divided by 25 could be any number from {3, 8, 13, 18, 23}
– Sean Goudarzi
Nov 20 at 16:07
I was assuming the work you showed in your question already; let me expand my answer to clarify this.
– Servaes
Nov 20 at 16:26
I was assuming the work you showed in your question already; let me expand my answer to clarify this.
– Servaes
Nov 20 at 16:26
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006485%2fwhat-is-the-remainder-of-313-div-25-by-hand-using-eulers-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$!!bmod 25!: 3^{large 20}equiv 1,Rightarrow,3^{large 10}equiv pm1,,$ must be $-1$ to be correct $!bmod 5. $ Equivalently, check your $2$ cases $!bmod 5 $
– Bill Dubuque
Nov 20 at 16:57