What is the remainder of $3^{13} div 25$ by hand using Euler's theorem?











up vote
1
down vote

favorite
2












Well, I know how to solve this problem by using some basic stuff:



$3^3 equiv 2 rightarrow 3^{12} equiv 2^4 rightarrow 3^{13} equiv 48equiv 23pmod{25}$



But what I'm trying to do is to solve this ONLY using Euler's theorem.
What I tried was (all congruences are in mod 25):



$phi(25)=20, space rightarrow 3^{13}equiv3^{13mod{phi(25)}}equiv3^{13mod20}$
which still gives me $3^{13}$ and there's no way I could calculate that.
So I tried to raise both sides of the starting equation to the power of two so I get something easier to calculate:



$3^{26}equiv x^2 equiv 3^{26mod20}equiv3^6$ and then $3^6equiv(3^{3})^2equiv27^2equiv2^2equiv4$ therefore $x^2=4 rightarrow x=2,-2$, hence $3^{13} equiv 2$ or $3^{13}equiv23$ (And we know that the correct answer is 23)



We can verify which one of $2$ and $23$ is the correct answer using Euler's theorem $a^{phi(n)}equiv1pmod{n}$ but I'm trying to find a shorter, possibly smarter answer which DOES use Euler's theorem. Any thoughts?










share|cite|improve this question
























  • $!!bmod 25!: 3^{large 20}equiv 1,Rightarrow,3^{large 10}equiv pm1,,$ must be $-1$ to be correct $!bmod 5. $ Equivalently, check your $2$ cases $!bmod 5 $
    – Bill Dubuque
    Nov 20 at 16:57















up vote
1
down vote

favorite
2












Well, I know how to solve this problem by using some basic stuff:



$3^3 equiv 2 rightarrow 3^{12} equiv 2^4 rightarrow 3^{13} equiv 48equiv 23pmod{25}$



But what I'm trying to do is to solve this ONLY using Euler's theorem.
What I tried was (all congruences are in mod 25):



$phi(25)=20, space rightarrow 3^{13}equiv3^{13mod{phi(25)}}equiv3^{13mod20}$
which still gives me $3^{13}$ and there's no way I could calculate that.
So I tried to raise both sides of the starting equation to the power of two so I get something easier to calculate:



$3^{26}equiv x^2 equiv 3^{26mod20}equiv3^6$ and then $3^6equiv(3^{3})^2equiv27^2equiv2^2equiv4$ therefore $x^2=4 rightarrow x=2,-2$, hence $3^{13} equiv 2$ or $3^{13}equiv23$ (And we know that the correct answer is 23)



We can verify which one of $2$ and $23$ is the correct answer using Euler's theorem $a^{phi(n)}equiv1pmod{n}$ but I'm trying to find a shorter, possibly smarter answer which DOES use Euler's theorem. Any thoughts?










share|cite|improve this question
























  • $!!bmod 25!: 3^{large 20}equiv 1,Rightarrow,3^{large 10}equiv pm1,,$ must be $-1$ to be correct $!bmod 5. $ Equivalently, check your $2$ cases $!bmod 5 $
    – Bill Dubuque
    Nov 20 at 16:57













up vote
1
down vote

favorite
2









up vote
1
down vote

favorite
2






2





Well, I know how to solve this problem by using some basic stuff:



$3^3 equiv 2 rightarrow 3^{12} equiv 2^4 rightarrow 3^{13} equiv 48equiv 23pmod{25}$



But what I'm trying to do is to solve this ONLY using Euler's theorem.
What I tried was (all congruences are in mod 25):



$phi(25)=20, space rightarrow 3^{13}equiv3^{13mod{phi(25)}}equiv3^{13mod20}$
which still gives me $3^{13}$ and there's no way I could calculate that.
So I tried to raise both sides of the starting equation to the power of two so I get something easier to calculate:



$3^{26}equiv x^2 equiv 3^{26mod20}equiv3^6$ and then $3^6equiv(3^{3})^2equiv27^2equiv2^2equiv4$ therefore $x^2=4 rightarrow x=2,-2$, hence $3^{13} equiv 2$ or $3^{13}equiv23$ (And we know that the correct answer is 23)



We can verify which one of $2$ and $23$ is the correct answer using Euler's theorem $a^{phi(n)}equiv1pmod{n}$ but I'm trying to find a shorter, possibly smarter answer which DOES use Euler's theorem. Any thoughts?










share|cite|improve this question















Well, I know how to solve this problem by using some basic stuff:



$3^3 equiv 2 rightarrow 3^{12} equiv 2^4 rightarrow 3^{13} equiv 48equiv 23pmod{25}$



But what I'm trying to do is to solve this ONLY using Euler's theorem.
What I tried was (all congruences are in mod 25):



$phi(25)=20, space rightarrow 3^{13}equiv3^{13mod{phi(25)}}equiv3^{13mod20}$
which still gives me $3^{13}$ and there's no way I could calculate that.
So I tried to raise both sides of the starting equation to the power of two so I get something easier to calculate:



$3^{26}equiv x^2 equiv 3^{26mod20}equiv3^6$ and then $3^6equiv(3^{3})^2equiv27^2equiv2^2equiv4$ therefore $x^2=4 rightarrow x=2,-2$, hence $3^{13} equiv 2$ or $3^{13}equiv23$ (And we know that the correct answer is 23)



We can verify which one of $2$ and $23$ is the correct answer using Euler's theorem $a^{phi(n)}equiv1pmod{n}$ but I'm trying to find a shorter, possibly smarter answer which DOES use Euler's theorem. Any thoughts?







modular-arithmetic totient-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 20 at 16:03









amWhy

191k27223437




191k27223437










asked Nov 20 at 15:51









Sean Goudarzi

1375




1375












  • $!!bmod 25!: 3^{large 20}equiv 1,Rightarrow,3^{large 10}equiv pm1,,$ must be $-1$ to be correct $!bmod 5. $ Equivalently, check your $2$ cases $!bmod 5 $
    – Bill Dubuque
    Nov 20 at 16:57


















  • $!!bmod 25!: 3^{large 20}equiv 1,Rightarrow,3^{large 10}equiv pm1,,$ must be $-1$ to be correct $!bmod 5. $ Equivalently, check your $2$ cases $!bmod 5 $
    – Bill Dubuque
    Nov 20 at 16:57
















$!!bmod 25!: 3^{large 20}equiv 1,Rightarrow,3^{large 10}equiv pm1,,$ must be $-1$ to be correct $!bmod 5. $ Equivalently, check your $2$ cases $!bmod 5 $
– Bill Dubuque
Nov 20 at 16:57




$!!bmod 25!: 3^{large 20}equiv 1,Rightarrow,3^{large 10}equiv pm1,,$ must be $-1$ to be correct $!bmod 5. $ Equivalently, check your $2$ cases $!bmod 5 $
– Bill Dubuque
Nov 20 at 16:57










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










You've already used Euler's theorem to show that $3^{13}equiv2pmod{25}$ or $3^{13}equiv23pmod{25}$, as
$$(3^{13})^2equiv3^{26}equiv3^{26mod{phi(25)}}equiv3^{26mod{20}}equiv3^6equiv4pmod{25}.$$
You can use Euler's theorem mod $5$ to finish the proof; you know that
$$3^{13}equiv3^{13mod{phi(5)}}equiv3^{13mod{4}}equiv3^1pmod{5},$$
and hence $3^{13}equiv23pmod{25}$.






share|cite|improve this answer



















  • 1




    I don't understand the second part, $3^{13}equiv23pmod{25}$, is there any property that I'm missing in modular arithmetics? What I conclude from the first expression is that $3^{13}$ divided by 25 could be any number from {3, 8, 13, 18, 23}
    – Sean Goudarzi
    Nov 20 at 16:07












  • I was assuming the work you showed in your question already; let me expand my answer to clarify this.
    – Servaes
    Nov 20 at 16:26













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006485%2fwhat-is-the-remainder-of-313-div-25-by-hand-using-eulers-theorem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
1
down vote



accepted










You've already used Euler's theorem to show that $3^{13}equiv2pmod{25}$ or $3^{13}equiv23pmod{25}$, as
$$(3^{13})^2equiv3^{26}equiv3^{26mod{phi(25)}}equiv3^{26mod{20}}equiv3^6equiv4pmod{25}.$$
You can use Euler's theorem mod $5$ to finish the proof; you know that
$$3^{13}equiv3^{13mod{phi(5)}}equiv3^{13mod{4}}equiv3^1pmod{5},$$
and hence $3^{13}equiv23pmod{25}$.






share|cite|improve this answer



















  • 1




    I don't understand the second part, $3^{13}equiv23pmod{25}$, is there any property that I'm missing in modular arithmetics? What I conclude from the first expression is that $3^{13}$ divided by 25 could be any number from {3, 8, 13, 18, 23}
    – Sean Goudarzi
    Nov 20 at 16:07












  • I was assuming the work you showed in your question already; let me expand my answer to clarify this.
    – Servaes
    Nov 20 at 16:26

















up vote
1
down vote



accepted










You've already used Euler's theorem to show that $3^{13}equiv2pmod{25}$ or $3^{13}equiv23pmod{25}$, as
$$(3^{13})^2equiv3^{26}equiv3^{26mod{phi(25)}}equiv3^{26mod{20}}equiv3^6equiv4pmod{25}.$$
You can use Euler's theorem mod $5$ to finish the proof; you know that
$$3^{13}equiv3^{13mod{phi(5)}}equiv3^{13mod{4}}equiv3^1pmod{5},$$
and hence $3^{13}equiv23pmod{25}$.






share|cite|improve this answer



















  • 1




    I don't understand the second part, $3^{13}equiv23pmod{25}$, is there any property that I'm missing in modular arithmetics? What I conclude from the first expression is that $3^{13}$ divided by 25 could be any number from {3, 8, 13, 18, 23}
    – Sean Goudarzi
    Nov 20 at 16:07












  • I was assuming the work you showed in your question already; let me expand my answer to clarify this.
    – Servaes
    Nov 20 at 16:26















up vote
1
down vote



accepted







up vote
1
down vote



accepted






You've already used Euler's theorem to show that $3^{13}equiv2pmod{25}$ or $3^{13}equiv23pmod{25}$, as
$$(3^{13})^2equiv3^{26}equiv3^{26mod{phi(25)}}equiv3^{26mod{20}}equiv3^6equiv4pmod{25}.$$
You can use Euler's theorem mod $5$ to finish the proof; you know that
$$3^{13}equiv3^{13mod{phi(5)}}equiv3^{13mod{4}}equiv3^1pmod{5},$$
and hence $3^{13}equiv23pmod{25}$.






share|cite|improve this answer














You've already used Euler's theorem to show that $3^{13}equiv2pmod{25}$ or $3^{13}equiv23pmod{25}$, as
$$(3^{13})^2equiv3^{26}equiv3^{26mod{phi(25)}}equiv3^{26mod{20}}equiv3^6equiv4pmod{25}.$$
You can use Euler's theorem mod $5$ to finish the proof; you know that
$$3^{13}equiv3^{13mod{phi(5)}}equiv3^{13mod{4}}equiv3^1pmod{5},$$
and hence $3^{13}equiv23pmod{25}$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Nov 20 at 16:28

























answered Nov 20 at 15:54









Servaes

20.6k33789




20.6k33789








  • 1




    I don't understand the second part, $3^{13}equiv23pmod{25}$, is there any property that I'm missing in modular arithmetics? What I conclude from the first expression is that $3^{13}$ divided by 25 could be any number from {3, 8, 13, 18, 23}
    – Sean Goudarzi
    Nov 20 at 16:07












  • I was assuming the work you showed in your question already; let me expand my answer to clarify this.
    – Servaes
    Nov 20 at 16:26
















  • 1




    I don't understand the second part, $3^{13}equiv23pmod{25}$, is there any property that I'm missing in modular arithmetics? What I conclude from the first expression is that $3^{13}$ divided by 25 could be any number from {3, 8, 13, 18, 23}
    – Sean Goudarzi
    Nov 20 at 16:07












  • I was assuming the work you showed in your question already; let me expand my answer to clarify this.
    – Servaes
    Nov 20 at 16:26










1




1




I don't understand the second part, $3^{13}equiv23pmod{25}$, is there any property that I'm missing in modular arithmetics? What I conclude from the first expression is that $3^{13}$ divided by 25 could be any number from {3, 8, 13, 18, 23}
– Sean Goudarzi
Nov 20 at 16:07






I don't understand the second part, $3^{13}equiv23pmod{25}$, is there any property that I'm missing in modular arithmetics? What I conclude from the first expression is that $3^{13}$ divided by 25 could be any number from {3, 8, 13, 18, 23}
– Sean Goudarzi
Nov 20 at 16:07














I was assuming the work you showed in your question already; let me expand my answer to clarify this.
– Servaes
Nov 20 at 16:26






I was assuming the work you showed in your question already; let me expand my answer to clarify this.
– Servaes
Nov 20 at 16:26




















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006485%2fwhat-is-the-remainder-of-313-div-25-by-hand-using-eulers-theorem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen