If $X,Y sim chi ^2$ with $m$ and $n$ degrees of freedom, then $frac{X}{X+Y} = beta(m/2, n/2)$
up vote
1
down vote
favorite
I was reading https://en.wikipedia.org/wiki/Ratio_distribution#Other_ratio_distributions and I find the following problem:
Let $X$ and $Y$ be $chi ^2 $ with $m$ and $n$ degrees of freedom then $dfrac{X}{X+Y} = beta(m/2, n/2)$. Where $chi^2(k)$ has density function $$f_{chi^2(k)}(x)=begin{cases}displaystyle
frac{1}{2^{k/2}Gamma(k/2)},x^{(k/2) - 1} e^{-x/2}&text{if }x>0,\
0&text{if }xle0
end{cases} $$
I proved that $X+Y$ is $chi ^2$ with $n + m$ degrees of freedom using the moment-generating function. If $Z=X+Y$ and $U=dfrac{X}{X+Y}=dfrac{X}{Z}$ using the formula for the density of the ratio of two independent random variables:
$$f_U(u)= int_{-infty}^{infty}f_X(uv)f_Z(v)|v|dv $$
then
$$dfrac{u^{m/2-1}}{2^{(m+n/2)} Gamma(m/2) Gamma((m+n)/2)} int_0^{infty} v^{m+dfrac{n}{2}-1} e^{-(v/2)(u+1)}dv $$
and using some algebra:
$$f_U(u)=dfrac{u^{m/2-1} Gamma(m+n/2)}{Gamma(m+n/2) Gamma(m/2) (u+1)^{m+n/2}}$$
and this is not $beta(m/2, n/2)$, it looks more like $beta(m/2, m/2+n/2)$ but $(u+1)^{m+n/2}$ is causing troubles.
I need help if something is false or any hint.
probability probability-distributions random-variables density-function
add a comment |
up vote
1
down vote
favorite
I was reading https://en.wikipedia.org/wiki/Ratio_distribution#Other_ratio_distributions and I find the following problem:
Let $X$ and $Y$ be $chi ^2 $ with $m$ and $n$ degrees of freedom then $dfrac{X}{X+Y} = beta(m/2, n/2)$. Where $chi^2(k)$ has density function $$f_{chi^2(k)}(x)=begin{cases}displaystyle
frac{1}{2^{k/2}Gamma(k/2)},x^{(k/2) - 1} e^{-x/2}&text{if }x>0,\
0&text{if }xle0
end{cases} $$
I proved that $X+Y$ is $chi ^2$ with $n + m$ degrees of freedom using the moment-generating function. If $Z=X+Y$ and $U=dfrac{X}{X+Y}=dfrac{X}{Z}$ using the formula for the density of the ratio of two independent random variables:
$$f_U(u)= int_{-infty}^{infty}f_X(uv)f_Z(v)|v|dv $$
then
$$dfrac{u^{m/2-1}}{2^{(m+n/2)} Gamma(m/2) Gamma((m+n)/2)} int_0^{infty} v^{m+dfrac{n}{2}-1} e^{-(v/2)(u+1)}dv $$
and using some algebra:
$$f_U(u)=dfrac{u^{m/2-1} Gamma(m+n/2)}{Gamma(m+n/2) Gamma(m/2) (u+1)^{m+n/2}}$$
and this is not $beta(m/2, n/2)$, it looks more like $beta(m/2, m/2+n/2)$ but $(u+1)^{m+n/2}$ is causing troubles.
I need help if something is false or any hint.
probability probability-distributions random-variables density-function
It is better to give the expression of $chi ^2 $, might help for the reader.
– Frey
May 3 '17 at 7:56
4
I'm pretty sure $X$ and $Z$ are not independent.
– Em.
May 3 '17 at 7:58
Thank you, the mistake was to consider $X$ and $Z$ independent
– Mike A.
May 3 '17 at 9:36
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I was reading https://en.wikipedia.org/wiki/Ratio_distribution#Other_ratio_distributions and I find the following problem:
Let $X$ and $Y$ be $chi ^2 $ with $m$ and $n$ degrees of freedom then $dfrac{X}{X+Y} = beta(m/2, n/2)$. Where $chi^2(k)$ has density function $$f_{chi^2(k)}(x)=begin{cases}displaystyle
frac{1}{2^{k/2}Gamma(k/2)},x^{(k/2) - 1} e^{-x/2}&text{if }x>0,\
0&text{if }xle0
end{cases} $$
I proved that $X+Y$ is $chi ^2$ with $n + m$ degrees of freedom using the moment-generating function. If $Z=X+Y$ and $U=dfrac{X}{X+Y}=dfrac{X}{Z}$ using the formula for the density of the ratio of two independent random variables:
$$f_U(u)= int_{-infty}^{infty}f_X(uv)f_Z(v)|v|dv $$
then
$$dfrac{u^{m/2-1}}{2^{(m+n/2)} Gamma(m/2) Gamma((m+n)/2)} int_0^{infty} v^{m+dfrac{n}{2}-1} e^{-(v/2)(u+1)}dv $$
and using some algebra:
$$f_U(u)=dfrac{u^{m/2-1} Gamma(m+n/2)}{Gamma(m+n/2) Gamma(m/2) (u+1)^{m+n/2}}$$
and this is not $beta(m/2, n/2)$, it looks more like $beta(m/2, m/2+n/2)$ but $(u+1)^{m+n/2}$ is causing troubles.
I need help if something is false or any hint.
probability probability-distributions random-variables density-function
I was reading https://en.wikipedia.org/wiki/Ratio_distribution#Other_ratio_distributions and I find the following problem:
Let $X$ and $Y$ be $chi ^2 $ with $m$ and $n$ degrees of freedom then $dfrac{X}{X+Y} = beta(m/2, n/2)$. Where $chi^2(k)$ has density function $$f_{chi^2(k)}(x)=begin{cases}displaystyle
frac{1}{2^{k/2}Gamma(k/2)},x^{(k/2) - 1} e^{-x/2}&text{if }x>0,\
0&text{if }xle0
end{cases} $$
I proved that $X+Y$ is $chi ^2$ with $n + m$ degrees of freedom using the moment-generating function. If $Z=X+Y$ and $U=dfrac{X}{X+Y}=dfrac{X}{Z}$ using the formula for the density of the ratio of two independent random variables:
$$f_U(u)= int_{-infty}^{infty}f_X(uv)f_Z(v)|v|dv $$
then
$$dfrac{u^{m/2-1}}{2^{(m+n/2)} Gamma(m/2) Gamma((m+n)/2)} int_0^{infty} v^{m+dfrac{n}{2}-1} e^{-(v/2)(u+1)}dv $$
and using some algebra:
$$f_U(u)=dfrac{u^{m/2-1} Gamma(m+n/2)}{Gamma(m+n/2) Gamma(m/2) (u+1)^{m+n/2}}$$
and this is not $beta(m/2, n/2)$, it looks more like $beta(m/2, m/2+n/2)$ but $(u+1)^{m+n/2}$ is causing troubles.
I need help if something is false or any hint.
probability probability-distributions random-variables density-function
probability probability-distributions random-variables density-function
edited Nov 20 at 15:59
StubbornAtom
4,88411137
4,88411137
asked May 3 '17 at 7:50
Mike A.
594414
594414
It is better to give the expression of $chi ^2 $, might help for the reader.
– Frey
May 3 '17 at 7:56
4
I'm pretty sure $X$ and $Z$ are not independent.
– Em.
May 3 '17 at 7:58
Thank you, the mistake was to consider $X$ and $Z$ independent
– Mike A.
May 3 '17 at 9:36
add a comment |
It is better to give the expression of $chi ^2 $, might help for the reader.
– Frey
May 3 '17 at 7:56
4
I'm pretty sure $X$ and $Z$ are not independent.
– Em.
May 3 '17 at 7:58
Thank you, the mistake was to consider $X$ and $Z$ independent
– Mike A.
May 3 '17 at 9:36
It is better to give the expression of $chi ^2 $, might help for the reader.
– Frey
May 3 '17 at 7:56
It is better to give the expression of $chi ^2 $, might help for the reader.
– Frey
May 3 '17 at 7:56
4
4
I'm pretty sure $X$ and $Z$ are not independent.
– Em.
May 3 '17 at 7:58
I'm pretty sure $X$ and $Z$ are not independent.
– Em.
May 3 '17 at 7:58
Thank you, the mistake was to consider $X$ and $Z$ independent
– Mike A.
May 3 '17 at 9:36
Thank you, the mistake was to consider $X$ and $Z$ independent
– Mike A.
May 3 '17 at 9:36
add a comment |
2 Answers
2
active
oldest
votes
up vote
0
down vote
I may start as follows, then you do not need to worry about the dependency:
begin{equation}
label{eq_cd}
begin{split}
F_{U}(u)
=&{mathbb P}left[frac{X}{X+Y} leq uright] ={mathbb P}left[Ygeq frac{(1-u)X}{u}right] \
=& 1-int_{0}^{infty}F_Yleft(frac{(1-u)x}{u}right)f_{X}(x) dx \
end{split}
end{equation}
Since you know both CDF and PDF of $chi^2$, you can evaluate $F_{U}(u)$ which may be with $_2 F_1(.,.,.,.)$ funtion. However, you may write $_2 F_1(.,.,.,.)$ with $B(.,.)$ function, if you really need it.
Then, you can find $f_{U}(u)=frac{d }{du}F_{U}(u)$.
add a comment |
up vote
0
down vote
accepted
Let $X sim chi^2(m)$ and $Y sim chi^2(n)$, and let $T(X,Y)=(U,V)$ be a transformation such that $T_1(X,Y)=U=frac{X}{X+Y}$ and $T_2(X,Y)=V=X+Y$, then $T^{-1}_1(U,V)=X= UV$ and $T^{-1}_2(U,V)=Y=V-UV$. Then $ |J_{T^{-1}}|=|V| $. $X$ and $Y$ are independent then the joint density function is:
$$ f_{X,Y}(x,y)=frac{(1/2)^{m/2}}{Gamma(m/2)}x^{m/2 -1} e^{-x/2} frac{(1/2)^{n/2}}{Gamma(n/2)}y^{n/2 -1} e^{-y/2} $$
for $x, y geq 0$ and $0$ in other case.
Then, by the theorem of change of variable we have:
$$f_U(u)= int_{-infty}^{infty} frac{(1/2)^{m/2+n/2}}{Gamma(m/2) Gamma(n/2)} (uv)^{m/2-1}(v-uv)^{n/2-1}e^{-uv/2-(v-uv)/2} |v|dv $$
We have $v=x+y$ then $f_U$ is $0$ for $v < 0$ then we can consider the integral only in the interval $(0, infty)$ and $|v|=v$, also $u=frac{x}{x+y}$ then $0 leq u leq 1$. With some algebra:
$$f_U(u)= frac{(1/2)^{m/2+n/2}}{Gamma(m/2) Gamma(n/2)} u^{m/2-1} (1-u)^{n/2-1} int_{0}^{infty} v^{m/2+n/2-1}e^{-v/2} dv $$
If $w=v/2$ and we make the change of variable in the integral we obtain:
$$int_{0}^{infty} v^{m/2+n/2-1}e^{-v/2} dv = 2^{m/2+n/2} Gamma(m/2+n/2)$$
Hence,
$$f_U(u)=frac{ Gamma(m/2+n/2) }{Gamma(m/2) Gamma(n/2)} u^{m/2-1} (1-u)^{n/2-1} =dfrac{u^{m/2-1} (1-u)^{n/2-1}}{B(m/2,n/2)}$$
in the interval $[0,1]$, and this is the density function of the Beta distribution.
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
I may start as follows, then you do not need to worry about the dependency:
begin{equation}
label{eq_cd}
begin{split}
F_{U}(u)
=&{mathbb P}left[frac{X}{X+Y} leq uright] ={mathbb P}left[Ygeq frac{(1-u)X}{u}right] \
=& 1-int_{0}^{infty}F_Yleft(frac{(1-u)x}{u}right)f_{X}(x) dx \
end{split}
end{equation}
Since you know both CDF and PDF of $chi^2$, you can evaluate $F_{U}(u)$ which may be with $_2 F_1(.,.,.,.)$ funtion. However, you may write $_2 F_1(.,.,.,.)$ with $B(.,.)$ function, if you really need it.
Then, you can find $f_{U}(u)=frac{d }{du}F_{U}(u)$.
add a comment |
up vote
0
down vote
I may start as follows, then you do not need to worry about the dependency:
begin{equation}
label{eq_cd}
begin{split}
F_{U}(u)
=&{mathbb P}left[frac{X}{X+Y} leq uright] ={mathbb P}left[Ygeq frac{(1-u)X}{u}right] \
=& 1-int_{0}^{infty}F_Yleft(frac{(1-u)x}{u}right)f_{X}(x) dx \
end{split}
end{equation}
Since you know both CDF and PDF of $chi^2$, you can evaluate $F_{U}(u)$ which may be with $_2 F_1(.,.,.,.)$ funtion. However, you may write $_2 F_1(.,.,.,.)$ with $B(.,.)$ function, if you really need it.
Then, you can find $f_{U}(u)=frac{d }{du}F_{U}(u)$.
add a comment |
up vote
0
down vote
up vote
0
down vote
I may start as follows, then you do not need to worry about the dependency:
begin{equation}
label{eq_cd}
begin{split}
F_{U}(u)
=&{mathbb P}left[frac{X}{X+Y} leq uright] ={mathbb P}left[Ygeq frac{(1-u)X}{u}right] \
=& 1-int_{0}^{infty}F_Yleft(frac{(1-u)x}{u}right)f_{X}(x) dx \
end{split}
end{equation}
Since you know both CDF and PDF of $chi^2$, you can evaluate $F_{U}(u)$ which may be with $_2 F_1(.,.,.,.)$ funtion. However, you may write $_2 F_1(.,.,.,.)$ with $B(.,.)$ function, if you really need it.
Then, you can find $f_{U}(u)=frac{d }{du}F_{U}(u)$.
I may start as follows, then you do not need to worry about the dependency:
begin{equation}
label{eq_cd}
begin{split}
F_{U}(u)
=&{mathbb P}left[frac{X}{X+Y} leq uright] ={mathbb P}left[Ygeq frac{(1-u)X}{u}right] \
=& 1-int_{0}^{infty}F_Yleft(frac{(1-u)x}{u}right)f_{X}(x) dx \
end{split}
end{equation}
Since you know both CDF and PDF of $chi^2$, you can evaluate $F_{U}(u)$ which may be with $_2 F_1(.,.,.,.)$ funtion. However, you may write $_2 F_1(.,.,.,.)$ with $B(.,.)$ function, if you really need it.
Then, you can find $f_{U}(u)=frac{d }{du}F_{U}(u)$.
answered May 3 '17 at 8:24
Frey
643312
643312
add a comment |
add a comment |
up vote
0
down vote
accepted
Let $X sim chi^2(m)$ and $Y sim chi^2(n)$, and let $T(X,Y)=(U,V)$ be a transformation such that $T_1(X,Y)=U=frac{X}{X+Y}$ and $T_2(X,Y)=V=X+Y$, then $T^{-1}_1(U,V)=X= UV$ and $T^{-1}_2(U,V)=Y=V-UV$. Then $ |J_{T^{-1}}|=|V| $. $X$ and $Y$ are independent then the joint density function is:
$$ f_{X,Y}(x,y)=frac{(1/2)^{m/2}}{Gamma(m/2)}x^{m/2 -1} e^{-x/2} frac{(1/2)^{n/2}}{Gamma(n/2)}y^{n/2 -1} e^{-y/2} $$
for $x, y geq 0$ and $0$ in other case.
Then, by the theorem of change of variable we have:
$$f_U(u)= int_{-infty}^{infty} frac{(1/2)^{m/2+n/2}}{Gamma(m/2) Gamma(n/2)} (uv)^{m/2-1}(v-uv)^{n/2-1}e^{-uv/2-(v-uv)/2} |v|dv $$
We have $v=x+y$ then $f_U$ is $0$ for $v < 0$ then we can consider the integral only in the interval $(0, infty)$ and $|v|=v$, also $u=frac{x}{x+y}$ then $0 leq u leq 1$. With some algebra:
$$f_U(u)= frac{(1/2)^{m/2+n/2}}{Gamma(m/2) Gamma(n/2)} u^{m/2-1} (1-u)^{n/2-1} int_{0}^{infty} v^{m/2+n/2-1}e^{-v/2} dv $$
If $w=v/2$ and we make the change of variable in the integral we obtain:
$$int_{0}^{infty} v^{m/2+n/2-1}e^{-v/2} dv = 2^{m/2+n/2} Gamma(m/2+n/2)$$
Hence,
$$f_U(u)=frac{ Gamma(m/2+n/2) }{Gamma(m/2) Gamma(n/2)} u^{m/2-1} (1-u)^{n/2-1} =dfrac{u^{m/2-1} (1-u)^{n/2-1}}{B(m/2,n/2)}$$
in the interval $[0,1]$, and this is the density function of the Beta distribution.
add a comment |
up vote
0
down vote
accepted
Let $X sim chi^2(m)$ and $Y sim chi^2(n)$, and let $T(X,Y)=(U,V)$ be a transformation such that $T_1(X,Y)=U=frac{X}{X+Y}$ and $T_2(X,Y)=V=X+Y$, then $T^{-1}_1(U,V)=X= UV$ and $T^{-1}_2(U,V)=Y=V-UV$. Then $ |J_{T^{-1}}|=|V| $. $X$ and $Y$ are independent then the joint density function is:
$$ f_{X,Y}(x,y)=frac{(1/2)^{m/2}}{Gamma(m/2)}x^{m/2 -1} e^{-x/2} frac{(1/2)^{n/2}}{Gamma(n/2)}y^{n/2 -1} e^{-y/2} $$
for $x, y geq 0$ and $0$ in other case.
Then, by the theorem of change of variable we have:
$$f_U(u)= int_{-infty}^{infty} frac{(1/2)^{m/2+n/2}}{Gamma(m/2) Gamma(n/2)} (uv)^{m/2-1}(v-uv)^{n/2-1}e^{-uv/2-(v-uv)/2} |v|dv $$
We have $v=x+y$ then $f_U$ is $0$ for $v < 0$ then we can consider the integral only in the interval $(0, infty)$ and $|v|=v$, also $u=frac{x}{x+y}$ then $0 leq u leq 1$. With some algebra:
$$f_U(u)= frac{(1/2)^{m/2+n/2}}{Gamma(m/2) Gamma(n/2)} u^{m/2-1} (1-u)^{n/2-1} int_{0}^{infty} v^{m/2+n/2-1}e^{-v/2} dv $$
If $w=v/2$ and we make the change of variable in the integral we obtain:
$$int_{0}^{infty} v^{m/2+n/2-1}e^{-v/2} dv = 2^{m/2+n/2} Gamma(m/2+n/2)$$
Hence,
$$f_U(u)=frac{ Gamma(m/2+n/2) }{Gamma(m/2) Gamma(n/2)} u^{m/2-1} (1-u)^{n/2-1} =dfrac{u^{m/2-1} (1-u)^{n/2-1}}{B(m/2,n/2)}$$
in the interval $[0,1]$, and this is the density function of the Beta distribution.
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
Let $X sim chi^2(m)$ and $Y sim chi^2(n)$, and let $T(X,Y)=(U,V)$ be a transformation such that $T_1(X,Y)=U=frac{X}{X+Y}$ and $T_2(X,Y)=V=X+Y$, then $T^{-1}_1(U,V)=X= UV$ and $T^{-1}_2(U,V)=Y=V-UV$. Then $ |J_{T^{-1}}|=|V| $. $X$ and $Y$ are independent then the joint density function is:
$$ f_{X,Y}(x,y)=frac{(1/2)^{m/2}}{Gamma(m/2)}x^{m/2 -1} e^{-x/2} frac{(1/2)^{n/2}}{Gamma(n/2)}y^{n/2 -1} e^{-y/2} $$
for $x, y geq 0$ and $0$ in other case.
Then, by the theorem of change of variable we have:
$$f_U(u)= int_{-infty}^{infty} frac{(1/2)^{m/2+n/2}}{Gamma(m/2) Gamma(n/2)} (uv)^{m/2-1}(v-uv)^{n/2-1}e^{-uv/2-(v-uv)/2} |v|dv $$
We have $v=x+y$ then $f_U$ is $0$ for $v < 0$ then we can consider the integral only in the interval $(0, infty)$ and $|v|=v$, also $u=frac{x}{x+y}$ then $0 leq u leq 1$. With some algebra:
$$f_U(u)= frac{(1/2)^{m/2+n/2}}{Gamma(m/2) Gamma(n/2)} u^{m/2-1} (1-u)^{n/2-1} int_{0}^{infty} v^{m/2+n/2-1}e^{-v/2} dv $$
If $w=v/2$ and we make the change of variable in the integral we obtain:
$$int_{0}^{infty} v^{m/2+n/2-1}e^{-v/2} dv = 2^{m/2+n/2} Gamma(m/2+n/2)$$
Hence,
$$f_U(u)=frac{ Gamma(m/2+n/2) }{Gamma(m/2) Gamma(n/2)} u^{m/2-1} (1-u)^{n/2-1} =dfrac{u^{m/2-1} (1-u)^{n/2-1}}{B(m/2,n/2)}$$
in the interval $[0,1]$, and this is the density function of the Beta distribution.
Let $X sim chi^2(m)$ and $Y sim chi^2(n)$, and let $T(X,Y)=(U,V)$ be a transformation such that $T_1(X,Y)=U=frac{X}{X+Y}$ and $T_2(X,Y)=V=X+Y$, then $T^{-1}_1(U,V)=X= UV$ and $T^{-1}_2(U,V)=Y=V-UV$. Then $ |J_{T^{-1}}|=|V| $. $X$ and $Y$ are independent then the joint density function is:
$$ f_{X,Y}(x,y)=frac{(1/2)^{m/2}}{Gamma(m/2)}x^{m/2 -1} e^{-x/2} frac{(1/2)^{n/2}}{Gamma(n/2)}y^{n/2 -1} e^{-y/2} $$
for $x, y geq 0$ and $0$ in other case.
Then, by the theorem of change of variable we have:
$$f_U(u)= int_{-infty}^{infty} frac{(1/2)^{m/2+n/2}}{Gamma(m/2) Gamma(n/2)} (uv)^{m/2-1}(v-uv)^{n/2-1}e^{-uv/2-(v-uv)/2} |v|dv $$
We have $v=x+y$ then $f_U$ is $0$ for $v < 0$ then we can consider the integral only in the interval $(0, infty)$ and $|v|=v$, also $u=frac{x}{x+y}$ then $0 leq u leq 1$. With some algebra:
$$f_U(u)= frac{(1/2)^{m/2+n/2}}{Gamma(m/2) Gamma(n/2)} u^{m/2-1} (1-u)^{n/2-1} int_{0}^{infty} v^{m/2+n/2-1}e^{-v/2} dv $$
If $w=v/2$ and we make the change of variable in the integral we obtain:
$$int_{0}^{infty} v^{m/2+n/2-1}e^{-v/2} dv = 2^{m/2+n/2} Gamma(m/2+n/2)$$
Hence,
$$f_U(u)=frac{ Gamma(m/2+n/2) }{Gamma(m/2) Gamma(n/2)} u^{m/2-1} (1-u)^{n/2-1} =dfrac{u^{m/2-1} (1-u)^{n/2-1}}{B(m/2,n/2)}$$
in the interval $[0,1]$, and this is the density function of the Beta distribution.
answered May 3 '17 at 10:26
Mike A.
594414
594414
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2263496%2fif-x-y-sim-chi-2-with-m-and-n-degrees-of-freedom-then-fracxxy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
It is better to give the expression of $chi ^2 $, might help for the reader.
– Frey
May 3 '17 at 7:56
4
I'm pretty sure $X$ and $Z$ are not independent.
– Em.
May 3 '17 at 7:58
Thank you, the mistake was to consider $X$ and $Z$ independent
– Mike A.
May 3 '17 at 9:36