Is there a holomorphic diffeomorphism of $mathbb{C}P^{2n+1}$ without fixed point?











up vote
0
down vote

favorite












Is there a holomorphic diffeomorphism $f:mathbb{C}P^{2n+1}to mathbb{C}P^{2n+1}$ without fixed point?










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    Is there a holomorphic diffeomorphism $f:mathbb{C}P^{2n+1}to mathbb{C}P^{2n+1}$ without fixed point?










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Is there a holomorphic diffeomorphism $f:mathbb{C}P^{2n+1}to mathbb{C}P^{2n+1}$ without fixed point?










      share|cite|improve this question















      Is there a holomorphic diffeomorphism $f:mathbb{C}P^{2n+1}to mathbb{C}P^{2n+1}$ without fixed point?







      complex-analysis fixed-point-theorems projective-space






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 20 at 17:38

























      asked Nov 20 at 16:03









      Ali Taghavi

      181329




      181329






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          No. The holomorphic diffeomorphisms of $mathbb C P^n$ are $PGL_{n+1}$. These always have fixed points because every matrix has an eigenvector.






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006503%2fis-there-a-holomorphic-diffeomorphism-of-mathbbcp2n1-without-fixed-poin%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            2
            down vote



            accepted










            No. The holomorphic diffeomorphisms of $mathbb C P^n$ are $PGL_{n+1}$. These always have fixed points because every matrix has an eigenvector.






            share|cite|improve this answer



























              up vote
              2
              down vote



              accepted










              No. The holomorphic diffeomorphisms of $mathbb C P^n$ are $PGL_{n+1}$. These always have fixed points because every matrix has an eigenvector.






              share|cite|improve this answer

























                up vote
                2
                down vote



                accepted







                up vote
                2
                down vote



                accepted






                No. The holomorphic diffeomorphisms of $mathbb C P^n$ are $PGL_{n+1}$. These always have fixed points because every matrix has an eigenvector.






                share|cite|improve this answer














                No. The holomorphic diffeomorphisms of $mathbb C P^n$ are $PGL_{n+1}$. These always have fixed points because every matrix has an eigenvector.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Nov 20 at 17:55

























                answered Nov 20 at 17:38









                Ben

                1,971616




                1,971616






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006503%2fis-there-a-holomorphic-diffeomorphism-of-mathbbcp2n1-without-fixed-poin%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen