How can I find $lim_{nrightarrowinfty}(1+frac{x}n)^{sqrt{n}}$?











up vote
3
down vote

favorite













How can I find $$lim_{nrightarrowinfty}left(1+frac{x}nright)^{sqrt{n}};?$$




I know $lim_{nrightarrowinfty}left(1+frac{x}nright)^{n} = exp (x)$ but I don't know how can I put the definition in this particular limit.



I know then, that $lim_{nrightarrowinfty}big(1+frac{x}nbig)=1$, but I don't think this is right to consider.










share|cite|improve this question




























    up vote
    3
    down vote

    favorite













    How can I find $$lim_{nrightarrowinfty}left(1+frac{x}nright)^{sqrt{n}};?$$




    I know $lim_{nrightarrowinfty}left(1+frac{x}nright)^{n} = exp (x)$ but I don't know how can I put the definition in this particular limit.



    I know then, that $lim_{nrightarrowinfty}big(1+frac{x}nbig)=1$, but I don't think this is right to consider.










    share|cite|improve this question


























      up vote
      3
      down vote

      favorite









      up vote
      3
      down vote

      favorite












      How can I find $$lim_{nrightarrowinfty}left(1+frac{x}nright)^{sqrt{n}};?$$




      I know $lim_{nrightarrowinfty}left(1+frac{x}nright)^{n} = exp (x)$ but I don't know how can I put the definition in this particular limit.



      I know then, that $lim_{nrightarrowinfty}big(1+frac{x}nbig)=1$, but I don't think this is right to consider.










      share|cite|improve this question
















      How can I find $$lim_{nrightarrowinfty}left(1+frac{x}nright)^{sqrt{n}};?$$




      I know $lim_{nrightarrowinfty}left(1+frac{x}nright)^{n} = exp (x)$ but I don't know how can I put the definition in this particular limit.



      I know then, that $lim_{nrightarrowinfty}big(1+frac{x}nbig)=1$, but I don't think this is right to consider.







      real-analysis sequences-and-series limits exponential-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 20 at 15:22









      amWhy

      191k27223437




      191k27223437










      asked Nov 20 at 14:46









      Dada

      346




      346






















          5 Answers
          5






          active

          oldest

          votes

















          up vote
          5
          down vote













          Hint:



          Compute the limit of the log: $;sqrt nlogBigl(1+ dfrac xnBigr)$ and use equivalence:
          $$log(1+u)sim_0 u.$$






          share|cite|improve this answer























          • I'd like to add an addendum to this answer since I wasn't sure about justifying the exchange of $log(1+u)$ with $u$. Since $log(1+u)sim u$, $lim_{utoinfty}frac{log(1+u)}{u}=1$ so $lim_{ntoinfty}frac{log(1+x/n)/left(frac{x}{n}right)}{sqrt{n}/{left(frac{x}{n}right)}}=frac{lim(ldots)}{lim_{ntoinfty}sqrt{n}{left(frac{n}{x}right)}}$.
            – Jam
            Nov 20 at 15:32






          • 1




            Should just be $sqrt n$ our front of the log, not $1/sqrt n$.
            – Shalop
            Nov 20 at 16:25






          • 1




            @Shalop: Thanks for pointing the typo. I've fixed it. For your first comment, I don't think it's necessary: I specified I used equivalence, in the sense of asymptotic analysis, and use the rules thereof (compatibility with product and quotient).
            – Bernard
            Nov 20 at 16:53










          • That wasn’t my comment though. It was jam
            – Shalop
            Nov 20 at 19:00


















          up vote
          5
          down vote













          $$lim_{nrightarrowinfty}left(1+frac{x}nright)^{sqrt{n}} = lim_{nrightarrowinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]^{{frac{x}{n}}{sqrt{n}}}$$
          From
          $$lim_{nrightarrowinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]=e quad text{and} quad lim_{nrightarrowinfty}{{frac{x}{n}}{sqrt{n}}}=0,$$ **, we get
          $$lim_{nrightarrowinfty}left(1+frac{x}nright)^{sqrt{n}} = e^0=1$$



          EDIT
          I add the note bellow as my calculation was considered insufficiently justified



          **and because the terms are positive, and we don't have an indeterminate case $0^0$ or $1^{infty}$ or $infty ^0,;$






          share|cite|improve this answer



















          • 3




            One needs an argument for "if $a_nto a$ and $b_nto b$ ($b_n,bgeqslant0, a_n,a>0$) then $a_n^{b_n}to a^b$".
            – user587192
            Nov 20 at 15:12












          • Or, if you prefer, put $t={n over x}.$ The mentioned limit becomes $lim_{t to infty} (1+{1over t})^{t}.$
            – user376343
            Nov 20 at 15:18








          • 1




            What do you use for the "we get..." step in the last line?
            – user587192
            Nov 20 at 15:19






          • 2




            @user376343 I think what user587 is driving at is that you've assumed that you can distribute the limit $lim_n a_n^{b_n} $ into $(lim_n a_n)^{(lim_n b_n)}$ but this isn't necessarily justified.
            – Jam
            Nov 20 at 15:26












          • From $$lim_{ntoinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]=e quad text{and} quad lim_{ntoinfty}{{frac{x}{n}}{sqrt{n}}}=0,$$ we get $$lim_{ntoinfty}left(1+frac{x}nright)^{sqrt{n}} =lim_{ntoinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]^{{frac{x}{n}}{sqrt{n}}} color{red}{ =left[lim_{ntoinfty}left(1+frac{x}nright)^{{frac{n}{x}}}right]^{lim_{ntoinfty}{frac{x}{n}}{sqrt{n}}} } color{blue}{= e^0} $$ You have the blue one, but you need the red part, which is not explicitly justified.
            – user587192
            Nov 20 at 15:44




















          up vote
          4
          down vote













          Let $y=(1+frac{x}{n})^{sqrt{n}}$. Note that
          $$
          ln y=sqrt{n}ln(1+frac{x}{n})=frac{ln(1+frac{x}{n})}{1/sqrt{n}}.
          $$

          As $ntoinfty$, this is a limit of the form $0/0$. Thus, we may apply L'Hopital's rule to obtain that
          $$
          lim_{ntoinfty}ln y=lim_{ntoinfty}frac{-frac{x}{n^{2}}/(1+frac{x}{n})}{-frac{1}{2}n^{-3/2}}=lim_{ntoinfty}frac{2x}{sqrt{n}+frac{x}{sqrt{n}}}=0
          $$

          Thus,
          $$
          lim_{ntoinfty}y=lim_{ntoinfty}e^{ln(y)}=e^{left(lim_{ntoinfty}ln(y)right)}=e^{0}=1.
          $$






          share|cite|improve this answer




























            up vote
            3
            down vote













            Hint for $xgeq1$:




            1. The expression and therefore the limit is relatively easily seen to be greater than or equal to $1$

            2. The expression is for any $epsilon>0$ eventually smaller than $left(1+frac xnright)^{epsilon n}$






            share|cite|improve this answer























            • Point 1. is only true for $x>0$. When $x<0$, the expression approaches $1$ from below so I think this argument might need a slight modification
              – Jam
              Nov 20 at 15:09










            • @Jam You're right. I've modified my hint.
              – Arthur
              Nov 20 at 15:12


















            up vote
            2
            down vote













            By L'Hopital,
            $$
            lim_{ytoinfty}sqrt{y}log(1+frac{x}{y})
            =lim_{tto 0}frac{log(1+tx)}{sqrt{t}}
            =lim_{tto 0}dfrac{frac{x}{1+tx}}{frac{1}{2sqrt{t}}}=0.
            $$

            Now one can use the continuity of the exponential function:
            $$
            lim_{ntoinfty}expleft[sqrt{n}log(1+frac{x}{n})right]
            =expleft[lim_{ntoinfty}sqrt{n}log(1+frac{x}{n})right]=1.
            $$






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














               

              draft saved


              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006395%2fhow-can-i-find-lim-n-rightarrow-infty1-fracxn-sqrtn%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              5 Answers
              5






              active

              oldest

              votes








              5 Answers
              5






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              5
              down vote













              Hint:



              Compute the limit of the log: $;sqrt nlogBigl(1+ dfrac xnBigr)$ and use equivalence:
              $$log(1+u)sim_0 u.$$






              share|cite|improve this answer























              • I'd like to add an addendum to this answer since I wasn't sure about justifying the exchange of $log(1+u)$ with $u$. Since $log(1+u)sim u$, $lim_{utoinfty}frac{log(1+u)}{u}=1$ so $lim_{ntoinfty}frac{log(1+x/n)/left(frac{x}{n}right)}{sqrt{n}/{left(frac{x}{n}right)}}=frac{lim(ldots)}{lim_{ntoinfty}sqrt{n}{left(frac{n}{x}right)}}$.
                – Jam
                Nov 20 at 15:32






              • 1




                Should just be $sqrt n$ our front of the log, not $1/sqrt n$.
                – Shalop
                Nov 20 at 16:25






              • 1




                @Shalop: Thanks for pointing the typo. I've fixed it. For your first comment, I don't think it's necessary: I specified I used equivalence, in the sense of asymptotic analysis, and use the rules thereof (compatibility with product and quotient).
                – Bernard
                Nov 20 at 16:53










              • That wasn’t my comment though. It was jam
                – Shalop
                Nov 20 at 19:00















              up vote
              5
              down vote













              Hint:



              Compute the limit of the log: $;sqrt nlogBigl(1+ dfrac xnBigr)$ and use equivalence:
              $$log(1+u)sim_0 u.$$






              share|cite|improve this answer























              • I'd like to add an addendum to this answer since I wasn't sure about justifying the exchange of $log(1+u)$ with $u$. Since $log(1+u)sim u$, $lim_{utoinfty}frac{log(1+u)}{u}=1$ so $lim_{ntoinfty}frac{log(1+x/n)/left(frac{x}{n}right)}{sqrt{n}/{left(frac{x}{n}right)}}=frac{lim(ldots)}{lim_{ntoinfty}sqrt{n}{left(frac{n}{x}right)}}$.
                – Jam
                Nov 20 at 15:32






              • 1




                Should just be $sqrt n$ our front of the log, not $1/sqrt n$.
                – Shalop
                Nov 20 at 16:25






              • 1




                @Shalop: Thanks for pointing the typo. I've fixed it. For your first comment, I don't think it's necessary: I specified I used equivalence, in the sense of asymptotic analysis, and use the rules thereof (compatibility with product and quotient).
                – Bernard
                Nov 20 at 16:53










              • That wasn’t my comment though. It was jam
                – Shalop
                Nov 20 at 19:00













              up vote
              5
              down vote










              up vote
              5
              down vote









              Hint:



              Compute the limit of the log: $;sqrt nlogBigl(1+ dfrac xnBigr)$ and use equivalence:
              $$log(1+u)sim_0 u.$$






              share|cite|improve this answer














              Hint:



              Compute the limit of the log: $;sqrt nlogBigl(1+ dfrac xnBigr)$ and use equivalence:
              $$log(1+u)sim_0 u.$$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Nov 20 at 16:49

























              answered Nov 20 at 14:52









              Bernard

              115k637107




              115k637107












              • I'd like to add an addendum to this answer since I wasn't sure about justifying the exchange of $log(1+u)$ with $u$. Since $log(1+u)sim u$, $lim_{utoinfty}frac{log(1+u)}{u}=1$ so $lim_{ntoinfty}frac{log(1+x/n)/left(frac{x}{n}right)}{sqrt{n}/{left(frac{x}{n}right)}}=frac{lim(ldots)}{lim_{ntoinfty}sqrt{n}{left(frac{n}{x}right)}}$.
                – Jam
                Nov 20 at 15:32






              • 1




                Should just be $sqrt n$ our front of the log, not $1/sqrt n$.
                – Shalop
                Nov 20 at 16:25






              • 1




                @Shalop: Thanks for pointing the typo. I've fixed it. For your first comment, I don't think it's necessary: I specified I used equivalence, in the sense of asymptotic analysis, and use the rules thereof (compatibility with product and quotient).
                – Bernard
                Nov 20 at 16:53










              • That wasn’t my comment though. It was jam
                – Shalop
                Nov 20 at 19:00


















              • I'd like to add an addendum to this answer since I wasn't sure about justifying the exchange of $log(1+u)$ with $u$. Since $log(1+u)sim u$, $lim_{utoinfty}frac{log(1+u)}{u}=1$ so $lim_{ntoinfty}frac{log(1+x/n)/left(frac{x}{n}right)}{sqrt{n}/{left(frac{x}{n}right)}}=frac{lim(ldots)}{lim_{ntoinfty}sqrt{n}{left(frac{n}{x}right)}}$.
                – Jam
                Nov 20 at 15:32






              • 1




                Should just be $sqrt n$ our front of the log, not $1/sqrt n$.
                – Shalop
                Nov 20 at 16:25






              • 1




                @Shalop: Thanks for pointing the typo. I've fixed it. For your first comment, I don't think it's necessary: I specified I used equivalence, in the sense of asymptotic analysis, and use the rules thereof (compatibility with product and quotient).
                – Bernard
                Nov 20 at 16:53










              • That wasn’t my comment though. It was jam
                – Shalop
                Nov 20 at 19:00
















              I'd like to add an addendum to this answer since I wasn't sure about justifying the exchange of $log(1+u)$ with $u$. Since $log(1+u)sim u$, $lim_{utoinfty}frac{log(1+u)}{u}=1$ so $lim_{ntoinfty}frac{log(1+x/n)/left(frac{x}{n}right)}{sqrt{n}/{left(frac{x}{n}right)}}=frac{lim(ldots)}{lim_{ntoinfty}sqrt{n}{left(frac{n}{x}right)}}$.
              – Jam
              Nov 20 at 15:32




              I'd like to add an addendum to this answer since I wasn't sure about justifying the exchange of $log(1+u)$ with $u$. Since $log(1+u)sim u$, $lim_{utoinfty}frac{log(1+u)}{u}=1$ so $lim_{ntoinfty}frac{log(1+x/n)/left(frac{x}{n}right)}{sqrt{n}/{left(frac{x}{n}right)}}=frac{lim(ldots)}{lim_{ntoinfty}sqrt{n}{left(frac{n}{x}right)}}$.
              – Jam
              Nov 20 at 15:32




              1




              1




              Should just be $sqrt n$ our front of the log, not $1/sqrt n$.
              – Shalop
              Nov 20 at 16:25




              Should just be $sqrt n$ our front of the log, not $1/sqrt n$.
              – Shalop
              Nov 20 at 16:25




              1




              1




              @Shalop: Thanks for pointing the typo. I've fixed it. For your first comment, I don't think it's necessary: I specified I used equivalence, in the sense of asymptotic analysis, and use the rules thereof (compatibility with product and quotient).
              – Bernard
              Nov 20 at 16:53




              @Shalop: Thanks for pointing the typo. I've fixed it. For your first comment, I don't think it's necessary: I specified I used equivalence, in the sense of asymptotic analysis, and use the rules thereof (compatibility with product and quotient).
              – Bernard
              Nov 20 at 16:53












              That wasn’t my comment though. It was jam
              – Shalop
              Nov 20 at 19:00




              That wasn’t my comment though. It was jam
              – Shalop
              Nov 20 at 19:00










              up vote
              5
              down vote













              $$lim_{nrightarrowinfty}left(1+frac{x}nright)^{sqrt{n}} = lim_{nrightarrowinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]^{{frac{x}{n}}{sqrt{n}}}$$
              From
              $$lim_{nrightarrowinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]=e quad text{and} quad lim_{nrightarrowinfty}{{frac{x}{n}}{sqrt{n}}}=0,$$ **, we get
              $$lim_{nrightarrowinfty}left(1+frac{x}nright)^{sqrt{n}} = e^0=1$$



              EDIT
              I add the note bellow as my calculation was considered insufficiently justified



              **and because the terms are positive, and we don't have an indeterminate case $0^0$ or $1^{infty}$ or $infty ^0,;$






              share|cite|improve this answer



















              • 3




                One needs an argument for "if $a_nto a$ and $b_nto b$ ($b_n,bgeqslant0, a_n,a>0$) then $a_n^{b_n}to a^b$".
                – user587192
                Nov 20 at 15:12












              • Or, if you prefer, put $t={n over x}.$ The mentioned limit becomes $lim_{t to infty} (1+{1over t})^{t}.$
                – user376343
                Nov 20 at 15:18








              • 1




                What do you use for the "we get..." step in the last line?
                – user587192
                Nov 20 at 15:19






              • 2




                @user376343 I think what user587 is driving at is that you've assumed that you can distribute the limit $lim_n a_n^{b_n} $ into $(lim_n a_n)^{(lim_n b_n)}$ but this isn't necessarily justified.
                – Jam
                Nov 20 at 15:26












              • From $$lim_{ntoinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]=e quad text{and} quad lim_{ntoinfty}{{frac{x}{n}}{sqrt{n}}}=0,$$ we get $$lim_{ntoinfty}left(1+frac{x}nright)^{sqrt{n}} =lim_{ntoinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]^{{frac{x}{n}}{sqrt{n}}} color{red}{ =left[lim_{ntoinfty}left(1+frac{x}nright)^{{frac{n}{x}}}right]^{lim_{ntoinfty}{frac{x}{n}}{sqrt{n}}} } color{blue}{= e^0} $$ You have the blue one, but you need the red part, which is not explicitly justified.
                – user587192
                Nov 20 at 15:44

















              up vote
              5
              down vote













              $$lim_{nrightarrowinfty}left(1+frac{x}nright)^{sqrt{n}} = lim_{nrightarrowinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]^{{frac{x}{n}}{sqrt{n}}}$$
              From
              $$lim_{nrightarrowinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]=e quad text{and} quad lim_{nrightarrowinfty}{{frac{x}{n}}{sqrt{n}}}=0,$$ **, we get
              $$lim_{nrightarrowinfty}left(1+frac{x}nright)^{sqrt{n}} = e^0=1$$



              EDIT
              I add the note bellow as my calculation was considered insufficiently justified



              **and because the terms are positive, and we don't have an indeterminate case $0^0$ or $1^{infty}$ or $infty ^0,;$






              share|cite|improve this answer



















              • 3




                One needs an argument for "if $a_nto a$ and $b_nto b$ ($b_n,bgeqslant0, a_n,a>0$) then $a_n^{b_n}to a^b$".
                – user587192
                Nov 20 at 15:12












              • Or, if you prefer, put $t={n over x}.$ The mentioned limit becomes $lim_{t to infty} (1+{1over t})^{t}.$
                – user376343
                Nov 20 at 15:18








              • 1




                What do you use for the "we get..." step in the last line?
                – user587192
                Nov 20 at 15:19






              • 2




                @user376343 I think what user587 is driving at is that you've assumed that you can distribute the limit $lim_n a_n^{b_n} $ into $(lim_n a_n)^{(lim_n b_n)}$ but this isn't necessarily justified.
                – Jam
                Nov 20 at 15:26












              • From $$lim_{ntoinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]=e quad text{and} quad lim_{ntoinfty}{{frac{x}{n}}{sqrt{n}}}=0,$$ we get $$lim_{ntoinfty}left(1+frac{x}nright)^{sqrt{n}} =lim_{ntoinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]^{{frac{x}{n}}{sqrt{n}}} color{red}{ =left[lim_{ntoinfty}left(1+frac{x}nright)^{{frac{n}{x}}}right]^{lim_{ntoinfty}{frac{x}{n}}{sqrt{n}}} } color{blue}{= e^0} $$ You have the blue one, but you need the red part, which is not explicitly justified.
                – user587192
                Nov 20 at 15:44















              up vote
              5
              down vote










              up vote
              5
              down vote









              $$lim_{nrightarrowinfty}left(1+frac{x}nright)^{sqrt{n}} = lim_{nrightarrowinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]^{{frac{x}{n}}{sqrt{n}}}$$
              From
              $$lim_{nrightarrowinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]=e quad text{and} quad lim_{nrightarrowinfty}{{frac{x}{n}}{sqrt{n}}}=0,$$ **, we get
              $$lim_{nrightarrowinfty}left(1+frac{x}nright)^{sqrt{n}} = e^0=1$$



              EDIT
              I add the note bellow as my calculation was considered insufficiently justified



              **and because the terms are positive, and we don't have an indeterminate case $0^0$ or $1^{infty}$ or $infty ^0,;$






              share|cite|improve this answer














              $$lim_{nrightarrowinfty}left(1+frac{x}nright)^{sqrt{n}} = lim_{nrightarrowinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]^{{frac{x}{n}}{sqrt{n}}}$$
              From
              $$lim_{nrightarrowinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]=e quad text{and} quad lim_{nrightarrowinfty}{{frac{x}{n}}{sqrt{n}}}=0,$$ **, we get
              $$lim_{nrightarrowinfty}left(1+frac{x}nright)^{sqrt{n}} = e^0=1$$



              EDIT
              I add the note bellow as my calculation was considered insufficiently justified



              **and because the terms are positive, and we don't have an indeterminate case $0^0$ or $1^{infty}$ or $infty ^0,;$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Nov 20 at 18:55

























              answered Nov 20 at 15:03









              user376343

              2,2931717




              2,2931717








              • 3




                One needs an argument for "if $a_nto a$ and $b_nto b$ ($b_n,bgeqslant0, a_n,a>0$) then $a_n^{b_n}to a^b$".
                – user587192
                Nov 20 at 15:12












              • Or, if you prefer, put $t={n over x}.$ The mentioned limit becomes $lim_{t to infty} (1+{1over t})^{t}.$
                – user376343
                Nov 20 at 15:18








              • 1




                What do you use for the "we get..." step in the last line?
                – user587192
                Nov 20 at 15:19






              • 2




                @user376343 I think what user587 is driving at is that you've assumed that you can distribute the limit $lim_n a_n^{b_n} $ into $(lim_n a_n)^{(lim_n b_n)}$ but this isn't necessarily justified.
                – Jam
                Nov 20 at 15:26












              • From $$lim_{ntoinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]=e quad text{and} quad lim_{ntoinfty}{{frac{x}{n}}{sqrt{n}}}=0,$$ we get $$lim_{ntoinfty}left(1+frac{x}nright)^{sqrt{n}} =lim_{ntoinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]^{{frac{x}{n}}{sqrt{n}}} color{red}{ =left[lim_{ntoinfty}left(1+frac{x}nright)^{{frac{n}{x}}}right]^{lim_{ntoinfty}{frac{x}{n}}{sqrt{n}}} } color{blue}{= e^0} $$ You have the blue one, but you need the red part, which is not explicitly justified.
                – user587192
                Nov 20 at 15:44
















              • 3




                One needs an argument for "if $a_nto a$ and $b_nto b$ ($b_n,bgeqslant0, a_n,a>0$) then $a_n^{b_n}to a^b$".
                – user587192
                Nov 20 at 15:12












              • Or, if you prefer, put $t={n over x}.$ The mentioned limit becomes $lim_{t to infty} (1+{1over t})^{t}.$
                – user376343
                Nov 20 at 15:18








              • 1




                What do you use for the "we get..." step in the last line?
                – user587192
                Nov 20 at 15:19






              • 2




                @user376343 I think what user587 is driving at is that you've assumed that you can distribute the limit $lim_n a_n^{b_n} $ into $(lim_n a_n)^{(lim_n b_n)}$ but this isn't necessarily justified.
                – Jam
                Nov 20 at 15:26












              • From $$lim_{ntoinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]=e quad text{and} quad lim_{ntoinfty}{{frac{x}{n}}{sqrt{n}}}=0,$$ we get $$lim_{ntoinfty}left(1+frac{x}nright)^{sqrt{n}} =lim_{ntoinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]^{{frac{x}{n}}{sqrt{n}}} color{red}{ =left[lim_{ntoinfty}left(1+frac{x}nright)^{{frac{n}{x}}}right]^{lim_{ntoinfty}{frac{x}{n}}{sqrt{n}}} } color{blue}{= e^0} $$ You have the blue one, but you need the red part, which is not explicitly justified.
                – user587192
                Nov 20 at 15:44










              3




              3




              One needs an argument for "if $a_nto a$ and $b_nto b$ ($b_n,bgeqslant0, a_n,a>0$) then $a_n^{b_n}to a^b$".
              – user587192
              Nov 20 at 15:12






              One needs an argument for "if $a_nto a$ and $b_nto b$ ($b_n,bgeqslant0, a_n,a>0$) then $a_n^{b_n}to a^b$".
              – user587192
              Nov 20 at 15:12














              Or, if you prefer, put $t={n over x}.$ The mentioned limit becomes $lim_{t to infty} (1+{1over t})^{t}.$
              – user376343
              Nov 20 at 15:18






              Or, if you prefer, put $t={n over x}.$ The mentioned limit becomes $lim_{t to infty} (1+{1over t})^{t}.$
              – user376343
              Nov 20 at 15:18






              1




              1




              What do you use for the "we get..." step in the last line?
              – user587192
              Nov 20 at 15:19




              What do you use for the "we get..." step in the last line?
              – user587192
              Nov 20 at 15:19




              2




              2




              @user376343 I think what user587 is driving at is that you've assumed that you can distribute the limit $lim_n a_n^{b_n} $ into $(lim_n a_n)^{(lim_n b_n)}$ but this isn't necessarily justified.
              – Jam
              Nov 20 at 15:26






              @user376343 I think what user587 is driving at is that you've assumed that you can distribute the limit $lim_n a_n^{b_n} $ into $(lim_n a_n)^{(lim_n b_n)}$ but this isn't necessarily justified.
              – Jam
              Nov 20 at 15:26














              From $$lim_{ntoinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]=e quad text{and} quad lim_{ntoinfty}{{frac{x}{n}}{sqrt{n}}}=0,$$ we get $$lim_{ntoinfty}left(1+frac{x}nright)^{sqrt{n}} =lim_{ntoinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]^{{frac{x}{n}}{sqrt{n}}} color{red}{ =left[lim_{ntoinfty}left(1+frac{x}nright)^{{frac{n}{x}}}right]^{lim_{ntoinfty}{frac{x}{n}}{sqrt{n}}} } color{blue}{= e^0} $$ You have the blue one, but you need the red part, which is not explicitly justified.
              – user587192
              Nov 20 at 15:44






              From $$lim_{ntoinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]=e quad text{and} quad lim_{ntoinfty}{{frac{x}{n}}{sqrt{n}}}=0,$$ we get $$lim_{ntoinfty}left(1+frac{x}nright)^{sqrt{n}} =lim_{ntoinfty}left[left(1+frac{x}nright)^{{frac{n}{x}}}right]^{{frac{x}{n}}{sqrt{n}}} color{red}{ =left[lim_{ntoinfty}left(1+frac{x}nright)^{{frac{n}{x}}}right]^{lim_{ntoinfty}{frac{x}{n}}{sqrt{n}}} } color{blue}{= e^0} $$ You have the blue one, but you need the red part, which is not explicitly justified.
              – user587192
              Nov 20 at 15:44












              up vote
              4
              down vote













              Let $y=(1+frac{x}{n})^{sqrt{n}}$. Note that
              $$
              ln y=sqrt{n}ln(1+frac{x}{n})=frac{ln(1+frac{x}{n})}{1/sqrt{n}}.
              $$

              As $ntoinfty$, this is a limit of the form $0/0$. Thus, we may apply L'Hopital's rule to obtain that
              $$
              lim_{ntoinfty}ln y=lim_{ntoinfty}frac{-frac{x}{n^{2}}/(1+frac{x}{n})}{-frac{1}{2}n^{-3/2}}=lim_{ntoinfty}frac{2x}{sqrt{n}+frac{x}{sqrt{n}}}=0
              $$

              Thus,
              $$
              lim_{ntoinfty}y=lim_{ntoinfty}e^{ln(y)}=e^{left(lim_{ntoinfty}ln(y)right)}=e^{0}=1.
              $$






              share|cite|improve this answer

























                up vote
                4
                down vote













                Let $y=(1+frac{x}{n})^{sqrt{n}}$. Note that
                $$
                ln y=sqrt{n}ln(1+frac{x}{n})=frac{ln(1+frac{x}{n})}{1/sqrt{n}}.
                $$

                As $ntoinfty$, this is a limit of the form $0/0$. Thus, we may apply L'Hopital's rule to obtain that
                $$
                lim_{ntoinfty}ln y=lim_{ntoinfty}frac{-frac{x}{n^{2}}/(1+frac{x}{n})}{-frac{1}{2}n^{-3/2}}=lim_{ntoinfty}frac{2x}{sqrt{n}+frac{x}{sqrt{n}}}=0
                $$

                Thus,
                $$
                lim_{ntoinfty}y=lim_{ntoinfty}e^{ln(y)}=e^{left(lim_{ntoinfty}ln(y)right)}=e^{0}=1.
                $$






                share|cite|improve this answer























                  up vote
                  4
                  down vote










                  up vote
                  4
                  down vote









                  Let $y=(1+frac{x}{n})^{sqrt{n}}$. Note that
                  $$
                  ln y=sqrt{n}ln(1+frac{x}{n})=frac{ln(1+frac{x}{n})}{1/sqrt{n}}.
                  $$

                  As $ntoinfty$, this is a limit of the form $0/0$. Thus, we may apply L'Hopital's rule to obtain that
                  $$
                  lim_{ntoinfty}ln y=lim_{ntoinfty}frac{-frac{x}{n^{2}}/(1+frac{x}{n})}{-frac{1}{2}n^{-3/2}}=lim_{ntoinfty}frac{2x}{sqrt{n}+frac{x}{sqrt{n}}}=0
                  $$

                  Thus,
                  $$
                  lim_{ntoinfty}y=lim_{ntoinfty}e^{ln(y)}=e^{left(lim_{ntoinfty}ln(y)right)}=e^{0}=1.
                  $$






                  share|cite|improve this answer












                  Let $y=(1+frac{x}{n})^{sqrt{n}}$. Note that
                  $$
                  ln y=sqrt{n}ln(1+frac{x}{n})=frac{ln(1+frac{x}{n})}{1/sqrt{n}}.
                  $$

                  As $ntoinfty$, this is a limit of the form $0/0$. Thus, we may apply L'Hopital's rule to obtain that
                  $$
                  lim_{ntoinfty}ln y=lim_{ntoinfty}frac{-frac{x}{n^{2}}/(1+frac{x}{n})}{-frac{1}{2}n^{-3/2}}=lim_{ntoinfty}frac{2x}{sqrt{n}+frac{x}{sqrt{n}}}=0
                  $$

                  Thus,
                  $$
                  lim_{ntoinfty}y=lim_{ntoinfty}e^{ln(y)}=e^{left(lim_{ntoinfty}ln(y)right)}=e^{0}=1.
                  $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 20 at 15:04









                  ervx

                  10.2k31338




                  10.2k31338






















                      up vote
                      3
                      down vote













                      Hint for $xgeq1$:




                      1. The expression and therefore the limit is relatively easily seen to be greater than or equal to $1$

                      2. The expression is for any $epsilon>0$ eventually smaller than $left(1+frac xnright)^{epsilon n}$






                      share|cite|improve this answer























                      • Point 1. is only true for $x>0$. When $x<0$, the expression approaches $1$ from below so I think this argument might need a slight modification
                        – Jam
                        Nov 20 at 15:09










                      • @Jam You're right. I've modified my hint.
                        – Arthur
                        Nov 20 at 15:12















                      up vote
                      3
                      down vote













                      Hint for $xgeq1$:




                      1. The expression and therefore the limit is relatively easily seen to be greater than or equal to $1$

                      2. The expression is for any $epsilon>0$ eventually smaller than $left(1+frac xnright)^{epsilon n}$






                      share|cite|improve this answer























                      • Point 1. is only true for $x>0$. When $x<0$, the expression approaches $1$ from below so I think this argument might need a slight modification
                        – Jam
                        Nov 20 at 15:09










                      • @Jam You're right. I've modified my hint.
                        – Arthur
                        Nov 20 at 15:12













                      up vote
                      3
                      down vote










                      up vote
                      3
                      down vote









                      Hint for $xgeq1$:




                      1. The expression and therefore the limit is relatively easily seen to be greater than or equal to $1$

                      2. The expression is for any $epsilon>0$ eventually smaller than $left(1+frac xnright)^{epsilon n}$






                      share|cite|improve this answer














                      Hint for $xgeq1$:




                      1. The expression and therefore the limit is relatively easily seen to be greater than or equal to $1$

                      2. The expression is for any $epsilon>0$ eventually smaller than $left(1+frac xnright)^{epsilon n}$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Nov 20 at 15:12

























                      answered Nov 20 at 14:52









                      Arthur

                      108k7103186




                      108k7103186












                      • Point 1. is only true for $x>0$. When $x<0$, the expression approaches $1$ from below so I think this argument might need a slight modification
                        – Jam
                        Nov 20 at 15:09










                      • @Jam You're right. I've modified my hint.
                        – Arthur
                        Nov 20 at 15:12


















                      • Point 1. is only true for $x>0$. When $x<0$, the expression approaches $1$ from below so I think this argument might need a slight modification
                        – Jam
                        Nov 20 at 15:09










                      • @Jam You're right. I've modified my hint.
                        – Arthur
                        Nov 20 at 15:12
















                      Point 1. is only true for $x>0$. When $x<0$, the expression approaches $1$ from below so I think this argument might need a slight modification
                      – Jam
                      Nov 20 at 15:09




                      Point 1. is only true for $x>0$. When $x<0$, the expression approaches $1$ from below so I think this argument might need a slight modification
                      – Jam
                      Nov 20 at 15:09












                      @Jam You're right. I've modified my hint.
                      – Arthur
                      Nov 20 at 15:12




                      @Jam You're right. I've modified my hint.
                      – Arthur
                      Nov 20 at 15:12










                      up vote
                      2
                      down vote













                      By L'Hopital,
                      $$
                      lim_{ytoinfty}sqrt{y}log(1+frac{x}{y})
                      =lim_{tto 0}frac{log(1+tx)}{sqrt{t}}
                      =lim_{tto 0}dfrac{frac{x}{1+tx}}{frac{1}{2sqrt{t}}}=0.
                      $$

                      Now one can use the continuity of the exponential function:
                      $$
                      lim_{ntoinfty}expleft[sqrt{n}log(1+frac{x}{n})right]
                      =expleft[lim_{ntoinfty}sqrt{n}log(1+frac{x}{n})right]=1.
                      $$






                      share|cite|improve this answer

























                        up vote
                        2
                        down vote













                        By L'Hopital,
                        $$
                        lim_{ytoinfty}sqrt{y}log(1+frac{x}{y})
                        =lim_{tto 0}frac{log(1+tx)}{sqrt{t}}
                        =lim_{tto 0}dfrac{frac{x}{1+tx}}{frac{1}{2sqrt{t}}}=0.
                        $$

                        Now one can use the continuity of the exponential function:
                        $$
                        lim_{ntoinfty}expleft[sqrt{n}log(1+frac{x}{n})right]
                        =expleft[lim_{ntoinfty}sqrt{n}log(1+frac{x}{n})right]=1.
                        $$






                        share|cite|improve this answer























                          up vote
                          2
                          down vote










                          up vote
                          2
                          down vote









                          By L'Hopital,
                          $$
                          lim_{ytoinfty}sqrt{y}log(1+frac{x}{y})
                          =lim_{tto 0}frac{log(1+tx)}{sqrt{t}}
                          =lim_{tto 0}dfrac{frac{x}{1+tx}}{frac{1}{2sqrt{t}}}=0.
                          $$

                          Now one can use the continuity of the exponential function:
                          $$
                          lim_{ntoinfty}expleft[sqrt{n}log(1+frac{x}{n})right]
                          =expleft[lim_{ntoinfty}sqrt{n}log(1+frac{x}{n})right]=1.
                          $$






                          share|cite|improve this answer












                          By L'Hopital,
                          $$
                          lim_{ytoinfty}sqrt{y}log(1+frac{x}{y})
                          =lim_{tto 0}frac{log(1+tx)}{sqrt{t}}
                          =lim_{tto 0}dfrac{frac{x}{1+tx}}{frac{1}{2sqrt{t}}}=0.
                          $$

                          Now one can use the continuity of the exponential function:
                          $$
                          lim_{ntoinfty}expleft[sqrt{n}log(1+frac{x}{n})right]
                          =expleft[lim_{ntoinfty}sqrt{n}log(1+frac{x}{n})right]=1.
                          $$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Nov 20 at 15:11









                          user587192

                          1,27510




                          1,27510






























                               

                              draft saved


                              draft discarded



















































                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006395%2fhow-can-i-find-lim-n-rightarrow-infty1-fracxn-sqrtn%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Wiesbaden

                              Marschland

                              Dieringhausen