Question in Iwaniec-Kowaleski's book : bound for a twisted series
up vote
2
down vote
favorite
I am currently reading Iwaniec-Kowaleski's book on Analytic Number Theory.
My question is on page 431. Here is what it says:
For any $chi mod q$, we have the twisted series $K(s,chi)=sum_{n=1}^infty left( sum_{d|n} lambda_d right) left( sum_{d|n} theta_b right) chi(n) n^{-s}.$
Here, we have $lambda(d)= mu(d) min left(1, frac{log(z/d)}{log(z/w)} right)$ for $1 leq d leq z$ where $1<w<z$ and we set $lambda_d=0$ if $d>z$.
Thus, we have $sum_{d|n} lambda_d=1$ if $n=1$ and $sum_{d|n} lambda_d=0$ if $1<n leq w.$
Furthermore, we have
$theta_b = frac{mu(b) b}{G phi(b)} sum_{ab leq y atop (a,bq)=1} frac{mu^2 (a)}{phi(a)}$ and $G$ is the normalization
factor such that $theta_1=1.$
Now, we can see that $K(s,chi)$ factors into $L(s,chi)M(s,chi)$, where $M(s,chi)=sum_m left(sum_{[b,d]} sum_{=m} lambda_d theta_b right) chi(m) m^{-s}$.
Now, if we take only a partial sum of $K(s,chi)$, we can define
$K_x(s,chi)=sum_{n=1}^x left( sum_{d|n} lambda_d right) left( sum_{d|n} theta_b right) chi(n) n^{-s}$ with $x=(qT)^{23}.$
Let $m=[b,d] leq bd leq yz $ and $chi not= chi_0.$
Then, why does this imply $left|sum_{n>x/m} chi(n) n^{-s} right| leq 2q |s| (m/x)^{sigma}$ where $s=sigma +it$. I do not understand where the $2q|s|$ comes from.
Assuming this, the book states
$|K(s,chi)-K_x(s,chi)| leq 2q|s|yz x^{-sigma}$. I do not understand where the yz term comes from.
Sorry for the length of this post. I wanted to give as much information as possible.
analytic-number-theory
This question has an open bounty worth +50
reputation from usere5225321 ending in 6 days.
Looking for an answer drawing from credible and/or official sources.
add a comment |
up vote
2
down vote
favorite
I am currently reading Iwaniec-Kowaleski's book on Analytic Number Theory.
My question is on page 431. Here is what it says:
For any $chi mod q$, we have the twisted series $K(s,chi)=sum_{n=1}^infty left( sum_{d|n} lambda_d right) left( sum_{d|n} theta_b right) chi(n) n^{-s}.$
Here, we have $lambda(d)= mu(d) min left(1, frac{log(z/d)}{log(z/w)} right)$ for $1 leq d leq z$ where $1<w<z$ and we set $lambda_d=0$ if $d>z$.
Thus, we have $sum_{d|n} lambda_d=1$ if $n=1$ and $sum_{d|n} lambda_d=0$ if $1<n leq w.$
Furthermore, we have
$theta_b = frac{mu(b) b}{G phi(b)} sum_{ab leq y atop (a,bq)=1} frac{mu^2 (a)}{phi(a)}$ and $G$ is the normalization
factor such that $theta_1=1.$
Now, we can see that $K(s,chi)$ factors into $L(s,chi)M(s,chi)$, where $M(s,chi)=sum_m left(sum_{[b,d]} sum_{=m} lambda_d theta_b right) chi(m) m^{-s}$.
Now, if we take only a partial sum of $K(s,chi)$, we can define
$K_x(s,chi)=sum_{n=1}^x left( sum_{d|n} lambda_d right) left( sum_{d|n} theta_b right) chi(n) n^{-s}$ with $x=(qT)^{23}.$
Let $m=[b,d] leq bd leq yz $ and $chi not= chi_0.$
Then, why does this imply $left|sum_{n>x/m} chi(n) n^{-s} right| leq 2q |s| (m/x)^{sigma}$ where $s=sigma +it$. I do not understand where the $2q|s|$ comes from.
Assuming this, the book states
$|K(s,chi)-K_x(s,chi)| leq 2q|s|yz x^{-sigma}$. I do not understand where the yz term comes from.
Sorry for the length of this post. I wanted to give as much information as possible.
analytic-number-theory
This question has an open bounty worth +50
reputation from usere5225321 ending in 6 days.
Looking for an answer drawing from credible and/or official sources.
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I am currently reading Iwaniec-Kowaleski's book on Analytic Number Theory.
My question is on page 431. Here is what it says:
For any $chi mod q$, we have the twisted series $K(s,chi)=sum_{n=1}^infty left( sum_{d|n} lambda_d right) left( sum_{d|n} theta_b right) chi(n) n^{-s}.$
Here, we have $lambda(d)= mu(d) min left(1, frac{log(z/d)}{log(z/w)} right)$ for $1 leq d leq z$ where $1<w<z$ and we set $lambda_d=0$ if $d>z$.
Thus, we have $sum_{d|n} lambda_d=1$ if $n=1$ and $sum_{d|n} lambda_d=0$ if $1<n leq w.$
Furthermore, we have
$theta_b = frac{mu(b) b}{G phi(b)} sum_{ab leq y atop (a,bq)=1} frac{mu^2 (a)}{phi(a)}$ and $G$ is the normalization
factor such that $theta_1=1.$
Now, we can see that $K(s,chi)$ factors into $L(s,chi)M(s,chi)$, where $M(s,chi)=sum_m left(sum_{[b,d]} sum_{=m} lambda_d theta_b right) chi(m) m^{-s}$.
Now, if we take only a partial sum of $K(s,chi)$, we can define
$K_x(s,chi)=sum_{n=1}^x left( sum_{d|n} lambda_d right) left( sum_{d|n} theta_b right) chi(n) n^{-s}$ with $x=(qT)^{23}.$
Let $m=[b,d] leq bd leq yz $ and $chi not= chi_0.$
Then, why does this imply $left|sum_{n>x/m} chi(n) n^{-s} right| leq 2q |s| (m/x)^{sigma}$ where $s=sigma +it$. I do not understand where the $2q|s|$ comes from.
Assuming this, the book states
$|K(s,chi)-K_x(s,chi)| leq 2q|s|yz x^{-sigma}$. I do not understand where the yz term comes from.
Sorry for the length of this post. I wanted to give as much information as possible.
analytic-number-theory
I am currently reading Iwaniec-Kowaleski's book on Analytic Number Theory.
My question is on page 431. Here is what it says:
For any $chi mod q$, we have the twisted series $K(s,chi)=sum_{n=1}^infty left( sum_{d|n} lambda_d right) left( sum_{d|n} theta_b right) chi(n) n^{-s}.$
Here, we have $lambda(d)= mu(d) min left(1, frac{log(z/d)}{log(z/w)} right)$ for $1 leq d leq z$ where $1<w<z$ and we set $lambda_d=0$ if $d>z$.
Thus, we have $sum_{d|n} lambda_d=1$ if $n=1$ and $sum_{d|n} lambda_d=0$ if $1<n leq w.$
Furthermore, we have
$theta_b = frac{mu(b) b}{G phi(b)} sum_{ab leq y atop (a,bq)=1} frac{mu^2 (a)}{phi(a)}$ and $G$ is the normalization
factor such that $theta_1=1.$
Now, we can see that $K(s,chi)$ factors into $L(s,chi)M(s,chi)$, where $M(s,chi)=sum_m left(sum_{[b,d]} sum_{=m} lambda_d theta_b right) chi(m) m^{-s}$.
Now, if we take only a partial sum of $K(s,chi)$, we can define
$K_x(s,chi)=sum_{n=1}^x left( sum_{d|n} lambda_d right) left( sum_{d|n} theta_b right) chi(n) n^{-s}$ with $x=(qT)^{23}.$
Let $m=[b,d] leq bd leq yz $ and $chi not= chi_0.$
Then, why does this imply $left|sum_{n>x/m} chi(n) n^{-s} right| leq 2q |s| (m/x)^{sigma}$ where $s=sigma +it$. I do not understand where the $2q|s|$ comes from.
Assuming this, the book states
$|K(s,chi)-K_x(s,chi)| leq 2q|s|yz x^{-sigma}$. I do not understand where the yz term comes from.
Sorry for the length of this post. I wanted to give as much information as possible.
analytic-number-theory
analytic-number-theory
asked Nov 15 at 17:44
usere5225321
579311
579311
This question has an open bounty worth +50
reputation from usere5225321 ending in 6 days.
Looking for an answer drawing from credible and/or official sources.
This question has an open bounty worth +50
reputation from usere5225321 ending in 6 days.
Looking for an answer drawing from credible and/or official sources.
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000017%2fquestion-in-iwaniec-kowaleskis-book-bound-for-a-twisted-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown