Evaluate the integral $int frac{x^2 + 1}{x^4 + x^2 +1} dx$











up vote
1
down vote

favorite












Evaluate the integral $int frac{x^2 + 1}{x^4 + x^2 +1} dx$



The book hint is:



Take $u = x- (1/x)$ but still I do not understand why this hint works, could anyone explain to me the intuition behind this hint?



The book answer is:




enter image description here











share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    Evaluate the integral $int frac{x^2 + 1}{x^4 + x^2 +1} dx$



    The book hint is:



    Take $u = x- (1/x)$ but still I do not understand why this hint works, could anyone explain to me the intuition behind this hint?



    The book answer is:




    enter image description here











    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Evaluate the integral $int frac{x^2 + 1}{x^4 + x^2 +1} dx$



      The book hint is:



      Take $u = x- (1/x)$ but still I do not understand why this hint works, could anyone explain to me the intuition behind this hint?



      The book answer is:




      enter image description here











      share|cite|improve this question















      Evaluate the integral $int frac{x^2 + 1}{x^4 + x^2 +1} dx$



      The book hint is:



      Take $u = x- (1/x)$ but still I do not understand why this hint works, could anyone explain to me the intuition behind this hint?



      The book answer is:




      enter image description here








      calculus real-analysis integration analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 19 hours ago

























      asked 21 hours ago









      hopefully

      16210




      16210






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted











          • Take $x^2$ common out from numerator and denominator. Then your fraction becomes $$frac{1+frac{1}{x^2}}{x^{2}+frac{1}{x^2}+1}$$ Now write $x^{2}+frac{1}{x^2} = (x-frac{1}{x})^{2}+2$






          share|cite|improve this answer





















          • But I can see that the final answer in the book contains 2 arctan ...... could you please explain this also for me?
            – hopefully
            20 hours ago










          • Sure. After substitution, $t=x-frac{1}{x}$, the integral becomes $int frac{1}{1+t^2} , dt$ and integral of this is given by $arctan(t)$
            – crskhr
            20 hours ago












          • No I do not mean this
            – hopefully
            20 hours ago










          • My answer is (1/3) arctan (x^2 -1)/sqrt {3} x ..... but the book answer is
            – hopefully
            20 hours ago










          • I will include it in the main question above
            – hopefully
            20 hours ago


















          up vote
          1
          down vote













          It turns out that we must compute the integral in the following way:
          $$I=intfrac{x^2+1}{x^4+x^2+1}mathrm{d}x$$
          $$I=intfrac{x^2+1}{(x^2-x+1)(x^2+x+1)}mathrm{d}x$$
          After a fraction decomposition,
          $$I=frac12intfrac{mathrm{d}x}{x^2+x+1}+frac12intfrac{mathrm{d}x}{x^2-x+1}$$
          Now we focus on
          $$I_1=intfrac{mathrm{d}x}{x^2+x+1}$$
          Completing the square in the denominator produces
          $$I_1=intfrac{mathrm{d}x}{(x+frac12)^2+frac34}$$
          Then the substitution $u=frac1{sqrt{3}}(2x+1)$ gives
          $$I_1=frac2{sqrt{3}}intfrac{mathrm{d}u}{u^2+1}$$
          $$I_1=frac2{sqrt{3}}arctanfrac{2x+1}{sqrt{3}}$$
          Similarly,
          $$I_2=intfrac{mathrm{d}x}{x^2-x+1}$$
          $$I_2=intfrac{mathrm{d}x}{(x-frac12)^2+frac34}$$
          And the substitution $u=x-frac12$ carries us to
          $$I_2=frac2{sqrt{3}}arctanfrac{2x-1}{sqrt{3}}$$
          Plugging in:
          $$I=frac1{sqrt{3}}bigg(arctanfrac{2x+1}{sqrt{3}}+arctanfrac{2x-1}{sqrt{3}}bigg)+C$$
          Which is confusing, because nowhere did we use the suggested substitution. Furthermore, using the suggested substitution produces
          $$I=intfrac{mathrm{d}u}{u^2+3}$$
          Which is easily shown to be
          $$I=frac1{sqrt{3}}arctanfrac{x^2+1}{xsqrt{3}}$$
          But apparently that is incorrect. I am really unsure how this is the case. Try asking your teacher.






          share|cite|improve this answer





















          • why you see that it is incorrect?
            – hopefully
            2 hours ago












          • @hopefully Click this link: desmos.com/calculator/hojmgfvkqb
            – clathratus
            2 hours ago










          • I have clicked it ...... I think the problem in your first solution because you decompose as if there were difference between 2 squares which is incorrect.
            – hopefully
            2 hours ago










          • So I think the solution in the book is wrong.
            – hopefully
            2 hours ago






          • 1




            @hopefully the book isn't wrong, but I don't know why $$3^{-1/2}arctanbigg((3^{1/2}x)^{-1}(x^2+1)bigg)$$ is wrong
            – clathratus
            1 hour ago











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004758%2fevaluate-the-integral-int-fracx2-1x4-x2-1-dx%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          2
          down vote



          accepted











          • Take $x^2$ common out from numerator and denominator. Then your fraction becomes $$frac{1+frac{1}{x^2}}{x^{2}+frac{1}{x^2}+1}$$ Now write $x^{2}+frac{1}{x^2} = (x-frac{1}{x})^{2}+2$






          share|cite|improve this answer





















          • But I can see that the final answer in the book contains 2 arctan ...... could you please explain this also for me?
            – hopefully
            20 hours ago










          • Sure. After substitution, $t=x-frac{1}{x}$, the integral becomes $int frac{1}{1+t^2} , dt$ and integral of this is given by $arctan(t)$
            – crskhr
            20 hours ago












          • No I do not mean this
            – hopefully
            20 hours ago










          • My answer is (1/3) arctan (x^2 -1)/sqrt {3} x ..... but the book answer is
            – hopefully
            20 hours ago










          • I will include it in the main question above
            – hopefully
            20 hours ago















          up vote
          2
          down vote



          accepted











          • Take $x^2$ common out from numerator and denominator. Then your fraction becomes $$frac{1+frac{1}{x^2}}{x^{2}+frac{1}{x^2}+1}$$ Now write $x^{2}+frac{1}{x^2} = (x-frac{1}{x})^{2}+2$






          share|cite|improve this answer





















          • But I can see that the final answer in the book contains 2 arctan ...... could you please explain this also for me?
            – hopefully
            20 hours ago










          • Sure. After substitution, $t=x-frac{1}{x}$, the integral becomes $int frac{1}{1+t^2} , dt$ and integral of this is given by $arctan(t)$
            – crskhr
            20 hours ago












          • No I do not mean this
            – hopefully
            20 hours ago










          • My answer is (1/3) arctan (x^2 -1)/sqrt {3} x ..... but the book answer is
            – hopefully
            20 hours ago










          • I will include it in the main question above
            – hopefully
            20 hours ago













          up vote
          2
          down vote



          accepted







          up vote
          2
          down vote



          accepted







          • Take $x^2$ common out from numerator and denominator. Then your fraction becomes $$frac{1+frac{1}{x^2}}{x^{2}+frac{1}{x^2}+1}$$ Now write $x^{2}+frac{1}{x^2} = (x-frac{1}{x})^{2}+2$






          share|cite|improve this answer













          • Take $x^2$ common out from numerator and denominator. Then your fraction becomes $$frac{1+frac{1}{x^2}}{x^{2}+frac{1}{x^2}+1}$$ Now write $x^{2}+frac{1}{x^2} = (x-frac{1}{x})^{2}+2$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 21 hours ago









          crskhr

          3,740925




          3,740925












          • But I can see that the final answer in the book contains 2 arctan ...... could you please explain this also for me?
            – hopefully
            20 hours ago










          • Sure. After substitution, $t=x-frac{1}{x}$, the integral becomes $int frac{1}{1+t^2} , dt$ and integral of this is given by $arctan(t)$
            – crskhr
            20 hours ago












          • No I do not mean this
            – hopefully
            20 hours ago










          • My answer is (1/3) arctan (x^2 -1)/sqrt {3} x ..... but the book answer is
            – hopefully
            20 hours ago










          • I will include it in the main question above
            – hopefully
            20 hours ago


















          • But I can see that the final answer in the book contains 2 arctan ...... could you please explain this also for me?
            – hopefully
            20 hours ago










          • Sure. After substitution, $t=x-frac{1}{x}$, the integral becomes $int frac{1}{1+t^2} , dt$ and integral of this is given by $arctan(t)$
            – crskhr
            20 hours ago












          • No I do not mean this
            – hopefully
            20 hours ago










          • My answer is (1/3) arctan (x^2 -1)/sqrt {3} x ..... but the book answer is
            – hopefully
            20 hours ago










          • I will include it in the main question above
            – hopefully
            20 hours ago
















          But I can see that the final answer in the book contains 2 arctan ...... could you please explain this also for me?
          – hopefully
          20 hours ago




          But I can see that the final answer in the book contains 2 arctan ...... could you please explain this also for me?
          – hopefully
          20 hours ago












          Sure. After substitution, $t=x-frac{1}{x}$, the integral becomes $int frac{1}{1+t^2} , dt$ and integral of this is given by $arctan(t)$
          – crskhr
          20 hours ago






          Sure. After substitution, $t=x-frac{1}{x}$, the integral becomes $int frac{1}{1+t^2} , dt$ and integral of this is given by $arctan(t)$
          – crskhr
          20 hours ago














          No I do not mean this
          – hopefully
          20 hours ago




          No I do not mean this
          – hopefully
          20 hours ago












          My answer is (1/3) arctan (x^2 -1)/sqrt {3} x ..... but the book answer is
          – hopefully
          20 hours ago




          My answer is (1/3) arctan (x^2 -1)/sqrt {3} x ..... but the book answer is
          – hopefully
          20 hours ago












          I will include it in the main question above
          – hopefully
          20 hours ago




          I will include it in the main question above
          – hopefully
          20 hours ago










          up vote
          1
          down vote













          It turns out that we must compute the integral in the following way:
          $$I=intfrac{x^2+1}{x^4+x^2+1}mathrm{d}x$$
          $$I=intfrac{x^2+1}{(x^2-x+1)(x^2+x+1)}mathrm{d}x$$
          After a fraction decomposition,
          $$I=frac12intfrac{mathrm{d}x}{x^2+x+1}+frac12intfrac{mathrm{d}x}{x^2-x+1}$$
          Now we focus on
          $$I_1=intfrac{mathrm{d}x}{x^2+x+1}$$
          Completing the square in the denominator produces
          $$I_1=intfrac{mathrm{d}x}{(x+frac12)^2+frac34}$$
          Then the substitution $u=frac1{sqrt{3}}(2x+1)$ gives
          $$I_1=frac2{sqrt{3}}intfrac{mathrm{d}u}{u^2+1}$$
          $$I_1=frac2{sqrt{3}}arctanfrac{2x+1}{sqrt{3}}$$
          Similarly,
          $$I_2=intfrac{mathrm{d}x}{x^2-x+1}$$
          $$I_2=intfrac{mathrm{d}x}{(x-frac12)^2+frac34}$$
          And the substitution $u=x-frac12$ carries us to
          $$I_2=frac2{sqrt{3}}arctanfrac{2x-1}{sqrt{3}}$$
          Plugging in:
          $$I=frac1{sqrt{3}}bigg(arctanfrac{2x+1}{sqrt{3}}+arctanfrac{2x-1}{sqrt{3}}bigg)+C$$
          Which is confusing, because nowhere did we use the suggested substitution. Furthermore, using the suggested substitution produces
          $$I=intfrac{mathrm{d}u}{u^2+3}$$
          Which is easily shown to be
          $$I=frac1{sqrt{3}}arctanfrac{x^2+1}{xsqrt{3}}$$
          But apparently that is incorrect. I am really unsure how this is the case. Try asking your teacher.






          share|cite|improve this answer





















          • why you see that it is incorrect?
            – hopefully
            2 hours ago












          • @hopefully Click this link: desmos.com/calculator/hojmgfvkqb
            – clathratus
            2 hours ago










          • I have clicked it ...... I think the problem in your first solution because you decompose as if there were difference between 2 squares which is incorrect.
            – hopefully
            2 hours ago










          • So I think the solution in the book is wrong.
            – hopefully
            2 hours ago






          • 1




            @hopefully the book isn't wrong, but I don't know why $$3^{-1/2}arctanbigg((3^{1/2}x)^{-1}(x^2+1)bigg)$$ is wrong
            – clathratus
            1 hour ago















          up vote
          1
          down vote













          It turns out that we must compute the integral in the following way:
          $$I=intfrac{x^2+1}{x^4+x^2+1}mathrm{d}x$$
          $$I=intfrac{x^2+1}{(x^2-x+1)(x^2+x+1)}mathrm{d}x$$
          After a fraction decomposition,
          $$I=frac12intfrac{mathrm{d}x}{x^2+x+1}+frac12intfrac{mathrm{d}x}{x^2-x+1}$$
          Now we focus on
          $$I_1=intfrac{mathrm{d}x}{x^2+x+1}$$
          Completing the square in the denominator produces
          $$I_1=intfrac{mathrm{d}x}{(x+frac12)^2+frac34}$$
          Then the substitution $u=frac1{sqrt{3}}(2x+1)$ gives
          $$I_1=frac2{sqrt{3}}intfrac{mathrm{d}u}{u^2+1}$$
          $$I_1=frac2{sqrt{3}}arctanfrac{2x+1}{sqrt{3}}$$
          Similarly,
          $$I_2=intfrac{mathrm{d}x}{x^2-x+1}$$
          $$I_2=intfrac{mathrm{d}x}{(x-frac12)^2+frac34}$$
          And the substitution $u=x-frac12$ carries us to
          $$I_2=frac2{sqrt{3}}arctanfrac{2x-1}{sqrt{3}}$$
          Plugging in:
          $$I=frac1{sqrt{3}}bigg(arctanfrac{2x+1}{sqrt{3}}+arctanfrac{2x-1}{sqrt{3}}bigg)+C$$
          Which is confusing, because nowhere did we use the suggested substitution. Furthermore, using the suggested substitution produces
          $$I=intfrac{mathrm{d}u}{u^2+3}$$
          Which is easily shown to be
          $$I=frac1{sqrt{3}}arctanfrac{x^2+1}{xsqrt{3}}$$
          But apparently that is incorrect. I am really unsure how this is the case. Try asking your teacher.






          share|cite|improve this answer





















          • why you see that it is incorrect?
            – hopefully
            2 hours ago












          • @hopefully Click this link: desmos.com/calculator/hojmgfvkqb
            – clathratus
            2 hours ago










          • I have clicked it ...... I think the problem in your first solution because you decompose as if there were difference between 2 squares which is incorrect.
            – hopefully
            2 hours ago










          • So I think the solution in the book is wrong.
            – hopefully
            2 hours ago






          • 1




            @hopefully the book isn't wrong, but I don't know why $$3^{-1/2}arctanbigg((3^{1/2}x)^{-1}(x^2+1)bigg)$$ is wrong
            – clathratus
            1 hour ago













          up vote
          1
          down vote










          up vote
          1
          down vote









          It turns out that we must compute the integral in the following way:
          $$I=intfrac{x^2+1}{x^4+x^2+1}mathrm{d}x$$
          $$I=intfrac{x^2+1}{(x^2-x+1)(x^2+x+1)}mathrm{d}x$$
          After a fraction decomposition,
          $$I=frac12intfrac{mathrm{d}x}{x^2+x+1}+frac12intfrac{mathrm{d}x}{x^2-x+1}$$
          Now we focus on
          $$I_1=intfrac{mathrm{d}x}{x^2+x+1}$$
          Completing the square in the denominator produces
          $$I_1=intfrac{mathrm{d}x}{(x+frac12)^2+frac34}$$
          Then the substitution $u=frac1{sqrt{3}}(2x+1)$ gives
          $$I_1=frac2{sqrt{3}}intfrac{mathrm{d}u}{u^2+1}$$
          $$I_1=frac2{sqrt{3}}arctanfrac{2x+1}{sqrt{3}}$$
          Similarly,
          $$I_2=intfrac{mathrm{d}x}{x^2-x+1}$$
          $$I_2=intfrac{mathrm{d}x}{(x-frac12)^2+frac34}$$
          And the substitution $u=x-frac12$ carries us to
          $$I_2=frac2{sqrt{3}}arctanfrac{2x-1}{sqrt{3}}$$
          Plugging in:
          $$I=frac1{sqrt{3}}bigg(arctanfrac{2x+1}{sqrt{3}}+arctanfrac{2x-1}{sqrt{3}}bigg)+C$$
          Which is confusing, because nowhere did we use the suggested substitution. Furthermore, using the suggested substitution produces
          $$I=intfrac{mathrm{d}u}{u^2+3}$$
          Which is easily shown to be
          $$I=frac1{sqrt{3}}arctanfrac{x^2+1}{xsqrt{3}}$$
          But apparently that is incorrect. I am really unsure how this is the case. Try asking your teacher.






          share|cite|improve this answer












          It turns out that we must compute the integral in the following way:
          $$I=intfrac{x^2+1}{x^4+x^2+1}mathrm{d}x$$
          $$I=intfrac{x^2+1}{(x^2-x+1)(x^2+x+1)}mathrm{d}x$$
          After a fraction decomposition,
          $$I=frac12intfrac{mathrm{d}x}{x^2+x+1}+frac12intfrac{mathrm{d}x}{x^2-x+1}$$
          Now we focus on
          $$I_1=intfrac{mathrm{d}x}{x^2+x+1}$$
          Completing the square in the denominator produces
          $$I_1=intfrac{mathrm{d}x}{(x+frac12)^2+frac34}$$
          Then the substitution $u=frac1{sqrt{3}}(2x+1)$ gives
          $$I_1=frac2{sqrt{3}}intfrac{mathrm{d}u}{u^2+1}$$
          $$I_1=frac2{sqrt{3}}arctanfrac{2x+1}{sqrt{3}}$$
          Similarly,
          $$I_2=intfrac{mathrm{d}x}{x^2-x+1}$$
          $$I_2=intfrac{mathrm{d}x}{(x-frac12)^2+frac34}$$
          And the substitution $u=x-frac12$ carries us to
          $$I_2=frac2{sqrt{3}}arctanfrac{2x-1}{sqrt{3}}$$
          Plugging in:
          $$I=frac1{sqrt{3}}bigg(arctanfrac{2x+1}{sqrt{3}}+arctanfrac{2x-1}{sqrt{3}}bigg)+C$$
          Which is confusing, because nowhere did we use the suggested substitution. Furthermore, using the suggested substitution produces
          $$I=intfrac{mathrm{d}u}{u^2+3}$$
          Which is easily shown to be
          $$I=frac1{sqrt{3}}arctanfrac{x^2+1}{xsqrt{3}}$$
          But apparently that is incorrect. I am really unsure how this is the case. Try asking your teacher.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 7 hours ago









          clathratus

          1,739219




          1,739219












          • why you see that it is incorrect?
            – hopefully
            2 hours ago












          • @hopefully Click this link: desmos.com/calculator/hojmgfvkqb
            – clathratus
            2 hours ago










          • I have clicked it ...... I think the problem in your first solution because you decompose as if there were difference between 2 squares which is incorrect.
            – hopefully
            2 hours ago










          • So I think the solution in the book is wrong.
            – hopefully
            2 hours ago






          • 1




            @hopefully the book isn't wrong, but I don't know why $$3^{-1/2}arctanbigg((3^{1/2}x)^{-1}(x^2+1)bigg)$$ is wrong
            – clathratus
            1 hour ago


















          • why you see that it is incorrect?
            – hopefully
            2 hours ago












          • @hopefully Click this link: desmos.com/calculator/hojmgfvkqb
            – clathratus
            2 hours ago










          • I have clicked it ...... I think the problem in your first solution because you decompose as if there were difference between 2 squares which is incorrect.
            – hopefully
            2 hours ago










          • So I think the solution in the book is wrong.
            – hopefully
            2 hours ago






          • 1




            @hopefully the book isn't wrong, but I don't know why $$3^{-1/2}arctanbigg((3^{1/2}x)^{-1}(x^2+1)bigg)$$ is wrong
            – clathratus
            1 hour ago
















          why you see that it is incorrect?
          – hopefully
          2 hours ago






          why you see that it is incorrect?
          – hopefully
          2 hours ago














          @hopefully Click this link: desmos.com/calculator/hojmgfvkqb
          – clathratus
          2 hours ago




          @hopefully Click this link: desmos.com/calculator/hojmgfvkqb
          – clathratus
          2 hours ago












          I have clicked it ...... I think the problem in your first solution because you decompose as if there were difference between 2 squares which is incorrect.
          – hopefully
          2 hours ago




          I have clicked it ...... I think the problem in your first solution because you decompose as if there were difference between 2 squares which is incorrect.
          – hopefully
          2 hours ago












          So I think the solution in the book is wrong.
          – hopefully
          2 hours ago




          So I think the solution in the book is wrong.
          – hopefully
          2 hours ago




          1




          1




          @hopefully the book isn't wrong, but I don't know why $$3^{-1/2}arctanbigg((3^{1/2}x)^{-1}(x^2+1)bigg)$$ is wrong
          – clathratus
          1 hour ago




          @hopefully the book isn't wrong, but I don't know why $$3^{-1/2}arctanbigg((3^{1/2}x)^{-1}(x^2+1)bigg)$$ is wrong
          – clathratus
          1 hour ago


















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004758%2fevaluate-the-integral-int-fracx2-1x4-x2-1-dx%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen