Primes of the form $((2^k-1)10^m+2^{(k-1)}+10)/42$, where m is the number of decimal digits of $2^{k-1}-1$
up vote
2
down vote
favorite
Primes of the form $dfrac{(2^k-1)*10^m+2^{(k-1)}+10}{42}$, where $m$ is the number of decimal digits of $2^{k-1}-1$.
With Pari I found that primes occur for $k=3,, 6, 12, 36, 105, 156,336, 2286, 4272,$ $4427, 11979, 20076, 29343, 29988, 30405$. $:$
The first thing I would ask is this: why there is only one $k=4427$ which is not a multiple of 3, whereas all the other $k$'s $(3, 6, 12, 36, 105, 156, 336, 2286, 4272, 11979, 20076, 29343, 29988, 30405)$ are congruent to $0mod3$.$:$ Is there any mathematical reason?$:$
The second question is: could be $k$ be of the form $3s+1$, i mean is there a $k$ of the form $3s+1$ such that $dfrac{(2^k-1)*10^m+2^{(k-1)}+10}{42}$ is prime?
The question is related to this other question:
A conjecture about numbers of the form $10^{m}(2^{k}−1)+2^{k-1}−1$, where $m$ is the number of decimal digits of $ 2^{k-1}$.
number-theory
New contributor
add a comment |
up vote
2
down vote
favorite
Primes of the form $dfrac{(2^k-1)*10^m+2^{(k-1)}+10}{42}$, where $m$ is the number of decimal digits of $2^{k-1}-1$.
With Pari I found that primes occur for $k=3,, 6, 12, 36, 105, 156,336, 2286, 4272,$ $4427, 11979, 20076, 29343, 29988, 30405$. $:$
The first thing I would ask is this: why there is only one $k=4427$ which is not a multiple of 3, whereas all the other $k$'s $(3, 6, 12, 36, 105, 156, 336, 2286, 4272, 11979, 20076, 29343, 29988, 30405)$ are congruent to $0mod3$.$:$ Is there any mathematical reason?$:$
The second question is: could be $k$ be of the form $3s+1$, i mean is there a $k$ of the form $3s+1$ such that $dfrac{(2^k-1)*10^m+2^{(k-1)}+10}{42}$ is prime?
The question is related to this other question:
A conjecture about numbers of the form $10^{m}(2^{k}−1)+2^{k-1}−1$, where $m$ is the number of decimal digits of $ 2^{k-1}$.
number-theory
New contributor
@Taneli Huuskonen@lulu is there some mathematical reason for that?
– paolo galli
Nov 15 at 13:10
(PARI) ec(n)= fromdigits(concat(digits(2^n-1), digits(2^(n-1)-1))) for(j=2, 10^4, s=ec(j); if(Mod(s+11, 42)==0, if(ispseudoprime((s+11)/42)==1, print1(j, ", "))))
– paolo galli
Nov 15 at 13:21
@Especially Lime is there any particular mathematical reason why primes of this type occur more often when k is a multiple of 3?
– paolo galli
Nov 15 at 14:10
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Primes of the form $dfrac{(2^k-1)*10^m+2^{(k-1)}+10}{42}$, where $m$ is the number of decimal digits of $2^{k-1}-1$.
With Pari I found that primes occur for $k=3,, 6, 12, 36, 105, 156,336, 2286, 4272,$ $4427, 11979, 20076, 29343, 29988, 30405$. $:$
The first thing I would ask is this: why there is only one $k=4427$ which is not a multiple of 3, whereas all the other $k$'s $(3, 6, 12, 36, 105, 156, 336, 2286, 4272, 11979, 20076, 29343, 29988, 30405)$ are congruent to $0mod3$.$:$ Is there any mathematical reason?$:$
The second question is: could be $k$ be of the form $3s+1$, i mean is there a $k$ of the form $3s+1$ such that $dfrac{(2^k-1)*10^m+2^{(k-1)}+10}{42}$ is prime?
The question is related to this other question:
A conjecture about numbers of the form $10^{m}(2^{k}−1)+2^{k-1}−1$, where $m$ is the number of decimal digits of $ 2^{k-1}$.
number-theory
New contributor
Primes of the form $dfrac{(2^k-1)*10^m+2^{(k-1)}+10}{42}$, where $m$ is the number of decimal digits of $2^{k-1}-1$.
With Pari I found that primes occur for $k=3,, 6, 12, 36, 105, 156,336, 2286, 4272,$ $4427, 11979, 20076, 29343, 29988, 30405$. $:$
The first thing I would ask is this: why there is only one $k=4427$ which is not a multiple of 3, whereas all the other $k$'s $(3, 6, 12, 36, 105, 156, 336, 2286, 4272, 11979, 20076, 29343, 29988, 30405)$ are congruent to $0mod3$.$:$ Is there any mathematical reason?$:$
The second question is: could be $k$ be of the form $3s+1$, i mean is there a $k$ of the form $3s+1$ such that $dfrac{(2^k-1)*10^m+2^{(k-1)}+10}{42}$ is prime?
The question is related to this other question:
A conjecture about numbers of the form $10^{m}(2^{k}−1)+2^{k-1}−1$, where $m$ is the number of decimal digits of $ 2^{k-1}$.
number-theory
number-theory
New contributor
New contributor
edited Nov 16 at 7:39
New contributor
asked Nov 15 at 12:48
paolo galli
263
263
New contributor
New contributor
@Taneli Huuskonen@lulu is there some mathematical reason for that?
– paolo galli
Nov 15 at 13:10
(PARI) ec(n)= fromdigits(concat(digits(2^n-1), digits(2^(n-1)-1))) for(j=2, 10^4, s=ec(j); if(Mod(s+11, 42)==0, if(ispseudoprime((s+11)/42)==1, print1(j, ", "))))
– paolo galli
Nov 15 at 13:21
@Especially Lime is there any particular mathematical reason why primes of this type occur more often when k is a multiple of 3?
– paolo galli
Nov 15 at 14:10
add a comment |
@Taneli Huuskonen@lulu is there some mathematical reason for that?
– paolo galli
Nov 15 at 13:10
(PARI) ec(n)= fromdigits(concat(digits(2^n-1), digits(2^(n-1)-1))) for(j=2, 10^4, s=ec(j); if(Mod(s+11, 42)==0, if(ispseudoprime((s+11)/42)==1, print1(j, ", "))))
– paolo galli
Nov 15 at 13:21
@Especially Lime is there any particular mathematical reason why primes of this type occur more often when k is a multiple of 3?
– paolo galli
Nov 15 at 14:10
@Taneli Huuskonen@lulu is there some mathematical reason for that?
– paolo galli
Nov 15 at 13:10
@Taneli Huuskonen@lulu is there some mathematical reason for that?
– paolo galli
Nov 15 at 13:10
(PARI) ec(n)= fromdigits(concat(digits(2^n-1), digits(2^(n-1)-1))) for(j=2, 10^4, s=ec(j); if(Mod(s+11, 42)==0, if(ispseudoprime((s+11)/42)==1, print1(j, ", "))))
– paolo galli
Nov 15 at 13:21
(PARI) ec(n)= fromdigits(concat(digits(2^n-1), digits(2^(n-1)-1))) for(j=2, 10^4, s=ec(j); if(Mod(s+11, 42)==0, if(ispseudoprime((s+11)/42)==1, print1(j, ", "))))
– paolo galli
Nov 15 at 13:21
@Especially Lime is there any particular mathematical reason why primes of this type occur more often when k is a multiple of 3?
– paolo galli
Nov 15 at 14:10
@Especially Lime is there any particular mathematical reason why primes of this type occur more often when k is a multiple of 3?
– paolo galli
Nov 15 at 14:10
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
If 3|k then Mod(2^k - 1, 7) = 0 and Mod(2^(k-1) - 1, 7) = 3, so Mod(ec(k),7) = 3 for any m.
If 3 does not divide k, the fact that 10 is a primitive root (mod 7) comes into play. In each case, there will only be one residue class of Mod(m, 6) that makes Mod(ec(k),7) = 3.
If k == 1 (mod 3) then Mod(2^(k-1) - 1, 7) = 0 and Mod(2^k - 1, 7) = 1, so Mod(ec(k), 7) = Mod(10^m, 7). This is 3 when Mod(m, 6) = 1.
If k == 2 (mod 3) then we have Mod(ec(k), 7) = Mod(3*10^m + 1, 7), which is again 3 when Mod(m,6) = 1.
Of the 18 possible pairs (Mod(k,3), Mod(m, 6)) then, the 6 pairs with Mod(k,3) = 0 , the pair (Mod(k,3) = 1, Mod(m,6) = 1), and the pair (Mod(k,3) = 2, Mod(m,6) = 1) allow Mod(pw(k), 7) = 3.
For the remaining ten pairs, Mod(ec(k), 7) is not 3.
So, ec(k) + 4 is divisible by 7 about 6 times as often for 3|k as for k == 1 (mod 3), and about 6 times as often as for k == 2 (mod 3). A numerical check up to k = 10000 confirms this.
New contributor
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
If 3|k then Mod(2^k - 1, 7) = 0 and Mod(2^(k-1) - 1, 7) = 3, so Mod(ec(k),7) = 3 for any m.
If 3 does not divide k, the fact that 10 is a primitive root (mod 7) comes into play. In each case, there will only be one residue class of Mod(m, 6) that makes Mod(ec(k),7) = 3.
If k == 1 (mod 3) then Mod(2^(k-1) - 1, 7) = 0 and Mod(2^k - 1, 7) = 1, so Mod(ec(k), 7) = Mod(10^m, 7). This is 3 when Mod(m, 6) = 1.
If k == 2 (mod 3) then we have Mod(ec(k), 7) = Mod(3*10^m + 1, 7), which is again 3 when Mod(m,6) = 1.
Of the 18 possible pairs (Mod(k,3), Mod(m, 6)) then, the 6 pairs with Mod(k,3) = 0 , the pair (Mod(k,3) = 1, Mod(m,6) = 1), and the pair (Mod(k,3) = 2, Mod(m,6) = 1) allow Mod(pw(k), 7) = 3.
For the remaining ten pairs, Mod(ec(k), 7) is not 3.
So, ec(k) + 4 is divisible by 7 about 6 times as often for 3|k as for k == 1 (mod 3), and about 6 times as often as for k == 2 (mod 3). A numerical check up to k = 10000 confirms this.
New contributor
add a comment |
up vote
0
down vote
If 3|k then Mod(2^k - 1, 7) = 0 and Mod(2^(k-1) - 1, 7) = 3, so Mod(ec(k),7) = 3 for any m.
If 3 does not divide k, the fact that 10 is a primitive root (mod 7) comes into play. In each case, there will only be one residue class of Mod(m, 6) that makes Mod(ec(k),7) = 3.
If k == 1 (mod 3) then Mod(2^(k-1) - 1, 7) = 0 and Mod(2^k - 1, 7) = 1, so Mod(ec(k), 7) = Mod(10^m, 7). This is 3 when Mod(m, 6) = 1.
If k == 2 (mod 3) then we have Mod(ec(k), 7) = Mod(3*10^m + 1, 7), which is again 3 when Mod(m,6) = 1.
Of the 18 possible pairs (Mod(k,3), Mod(m, 6)) then, the 6 pairs with Mod(k,3) = 0 , the pair (Mod(k,3) = 1, Mod(m,6) = 1), and the pair (Mod(k,3) = 2, Mod(m,6) = 1) allow Mod(pw(k), 7) = 3.
For the remaining ten pairs, Mod(ec(k), 7) is not 3.
So, ec(k) + 4 is divisible by 7 about 6 times as often for 3|k as for k == 1 (mod 3), and about 6 times as often as for k == 2 (mod 3). A numerical check up to k = 10000 confirms this.
New contributor
add a comment |
up vote
0
down vote
up vote
0
down vote
If 3|k then Mod(2^k - 1, 7) = 0 and Mod(2^(k-1) - 1, 7) = 3, so Mod(ec(k),7) = 3 for any m.
If 3 does not divide k, the fact that 10 is a primitive root (mod 7) comes into play. In each case, there will only be one residue class of Mod(m, 6) that makes Mod(ec(k),7) = 3.
If k == 1 (mod 3) then Mod(2^(k-1) - 1, 7) = 0 and Mod(2^k - 1, 7) = 1, so Mod(ec(k), 7) = Mod(10^m, 7). This is 3 when Mod(m, 6) = 1.
If k == 2 (mod 3) then we have Mod(ec(k), 7) = Mod(3*10^m + 1, 7), which is again 3 when Mod(m,6) = 1.
Of the 18 possible pairs (Mod(k,3), Mod(m, 6)) then, the 6 pairs with Mod(k,3) = 0 , the pair (Mod(k,3) = 1, Mod(m,6) = 1), and the pair (Mod(k,3) = 2, Mod(m,6) = 1) allow Mod(pw(k), 7) = 3.
For the remaining ten pairs, Mod(ec(k), 7) is not 3.
So, ec(k) + 4 is divisible by 7 about 6 times as often for 3|k as for k == 1 (mod 3), and about 6 times as often as for k == 2 (mod 3). A numerical check up to k = 10000 confirms this.
New contributor
If 3|k then Mod(2^k - 1, 7) = 0 and Mod(2^(k-1) - 1, 7) = 3, so Mod(ec(k),7) = 3 for any m.
If 3 does not divide k, the fact that 10 is a primitive root (mod 7) comes into play. In each case, there will only be one residue class of Mod(m, 6) that makes Mod(ec(k),7) = 3.
If k == 1 (mod 3) then Mod(2^(k-1) - 1, 7) = 0 and Mod(2^k - 1, 7) = 1, so Mod(ec(k), 7) = Mod(10^m, 7). This is 3 when Mod(m, 6) = 1.
If k == 2 (mod 3) then we have Mod(ec(k), 7) = Mod(3*10^m + 1, 7), which is again 3 when Mod(m,6) = 1.
Of the 18 possible pairs (Mod(k,3), Mod(m, 6)) then, the 6 pairs with Mod(k,3) = 0 , the pair (Mod(k,3) = 1, Mod(m,6) = 1), and the pair (Mod(k,3) = 2, Mod(m,6) = 1) allow Mod(pw(k), 7) = 3.
For the remaining ten pairs, Mod(ec(k), 7) is not 3.
So, ec(k) + 4 is divisible by 7 about 6 times as often for 3|k as for k == 1 (mod 3), and about 6 times as often as for k == 2 (mod 3). A numerical check up to k = 10000 confirms this.
New contributor
New contributor
answered 18 hours ago
paolo galli
263
263
New contributor
New contributor
add a comment |
add a comment |
paolo galli is a new contributor. Be nice, and check out our Code of Conduct.
paolo galli is a new contributor. Be nice, and check out our Code of Conduct.
paolo galli is a new contributor. Be nice, and check out our Code of Conduct.
paolo galli is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999664%2fprimes-of-the-form-2k-110m2k-110-42-where-m-is-the-number-of-dec%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
@Taneli Huuskonen@lulu is there some mathematical reason for that?
– paolo galli
Nov 15 at 13:10
(PARI) ec(n)= fromdigits(concat(digits(2^n-1), digits(2^(n-1)-1))) for(j=2, 10^4, s=ec(j); if(Mod(s+11, 42)==0, if(ispseudoprime((s+11)/42)==1, print1(j, ", "))))
– paolo galli
Nov 15 at 13:21
@Especially Lime is there any particular mathematical reason why primes of this type occur more often when k is a multiple of 3?
– paolo galli
Nov 15 at 14:10