Solving $int^{+ infty}_{- infty} exp(-x-e^{-x})dx= frac{1}{c}$
up vote
0
down vote
favorite
I need to solve an equation.
$int^{+ infty}_{- infty} exp(-x-e^{-x})dx= frac{1}{c}$
I know that
$int^{+infty}_{-infty} exp(-x-e^{-x})dx= lim_{a rightarrow -infty} int^{0}_{a} exp(-x-e^{-x})dx + lim_{b {rightarrow infty}} int^{b}_{0} exp(-x-e^{-x})dx$
Can somebody explain step by step how to integrate $int lim_{a rightarrow -infty} int^{a}_{0} exp(-x-e^{-x})dx $
I used variable exchange method and I got
$lim_{a rightarrow -infty} (e-e^{-a})$.
Is it right? But how to solve this limit?
probability integration limits
add a comment |
up vote
0
down vote
favorite
I need to solve an equation.
$int^{+ infty}_{- infty} exp(-x-e^{-x})dx= frac{1}{c}$
I know that
$int^{+infty}_{-infty} exp(-x-e^{-x})dx= lim_{a rightarrow -infty} int^{0}_{a} exp(-x-e^{-x})dx + lim_{b {rightarrow infty}} int^{b}_{0} exp(-x-e^{-x})dx$
Can somebody explain step by step how to integrate $int lim_{a rightarrow -infty} int^{a}_{0} exp(-x-e^{-x})dx $
I used variable exchange method and I got
$lim_{a rightarrow -infty} (e-e^{-a})$.
Is it right? But how to solve this limit?
probability integration limits
Are you sure about your limit expansion? Should they not be $a rightarrow infty$ and $b rightarrow -infty$?
– Easymode44
19 hours ago
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I need to solve an equation.
$int^{+ infty}_{- infty} exp(-x-e^{-x})dx= frac{1}{c}$
I know that
$int^{+infty}_{-infty} exp(-x-e^{-x})dx= lim_{a rightarrow -infty} int^{0}_{a} exp(-x-e^{-x})dx + lim_{b {rightarrow infty}} int^{b}_{0} exp(-x-e^{-x})dx$
Can somebody explain step by step how to integrate $int lim_{a rightarrow -infty} int^{a}_{0} exp(-x-e^{-x})dx $
I used variable exchange method and I got
$lim_{a rightarrow -infty} (e-e^{-a})$.
Is it right? But how to solve this limit?
probability integration limits
I need to solve an equation.
$int^{+ infty}_{- infty} exp(-x-e^{-x})dx= frac{1}{c}$
I know that
$int^{+infty}_{-infty} exp(-x-e^{-x})dx= lim_{a rightarrow -infty} int^{0}_{a} exp(-x-e^{-x})dx + lim_{b {rightarrow infty}} int^{b}_{0} exp(-x-e^{-x})dx$
Can somebody explain step by step how to integrate $int lim_{a rightarrow -infty} int^{a}_{0} exp(-x-e^{-x})dx $
I used variable exchange method and I got
$lim_{a rightarrow -infty} (e-e^{-a})$.
Is it right? But how to solve this limit?
probability integration limits
probability integration limits
edited 18 hours ago
amWhy
191k27223437
191k27223437
asked 20 hours ago
Atstovas
293
293
Are you sure about your limit expansion? Should they not be $a rightarrow infty$ and $b rightarrow -infty$?
– Easymode44
19 hours ago
add a comment |
Are you sure about your limit expansion? Should they not be $a rightarrow infty$ and $b rightarrow -infty$?
– Easymode44
19 hours ago
Are you sure about your limit expansion? Should they not be $a rightarrow infty$ and $b rightarrow -infty$?
– Easymode44
19 hours ago
Are you sure about your limit expansion? Should they not be $a rightarrow infty$ and $b rightarrow -infty$?
– Easymode44
19 hours ago
add a comment |
1 Answer
1
active
oldest
votes
up vote
4
down vote
This isn't an integral equation---it's just doing an integral. Change variable $u=e^{-x}$, and you get 1.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
This isn't an integral equation---it's just doing an integral. Change variable $u=e^{-x}$, and you get 1.
add a comment |
up vote
4
down vote
This isn't an integral equation---it's just doing an integral. Change variable $u=e^{-x}$, and you get 1.
add a comment |
up vote
4
down vote
up vote
4
down vote
This isn't an integral equation---it's just doing an integral. Change variable $u=e^{-x}$, and you get 1.
This isn't an integral equation---it's just doing an integral. Change variable $u=e^{-x}$, and you get 1.
answered 20 hours ago
Richard Martin
1,2588
1,2588
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004740%2fsolving-int-infty-infty-exp-x-e-xdx-frac1c%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Are you sure about your limit expansion? Should they not be $a rightarrow infty$ and $b rightarrow -infty$?
– Easymode44
19 hours ago