Sum of independent random variables with different distributions
up vote
0
down vote
favorite
Can we find the distribution of the sum of random variables with different pmf and different possible values?For example let X be a Poisson random variable with parameter $lambda$ and Y an independent Bernoulli random variable with parameter $p$. Then is the probability mass function of X + Y
$$p_{X+Y}(n)=sum_{k=1}^n P(X=n-k)P(Y=k) = e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p = pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}?$$
probability proof-verification
add a comment |
up vote
0
down vote
favorite
Can we find the distribution of the sum of random variables with different pmf and different possible values?For example let X be a Poisson random variable with parameter $lambda$ and Y an independent Bernoulli random variable with parameter $p$. Then is the probability mass function of X + Y
$$p_{X+Y}(n)=sum_{k=1}^n P(X=n-k)P(Y=k) = e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p = pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}?$$
probability proof-verification
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Can we find the distribution of the sum of random variables with different pmf and different possible values?For example let X be a Poisson random variable with parameter $lambda$ and Y an independent Bernoulli random variable with parameter $p$. Then is the probability mass function of X + Y
$$p_{X+Y}(n)=sum_{k=1}^n P(X=n-k)P(Y=k) = e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p = pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}?$$
probability proof-verification
Can we find the distribution of the sum of random variables with different pmf and different possible values?For example let X be a Poisson random variable with parameter $lambda$ and Y an independent Bernoulli random variable with parameter $p$. Then is the probability mass function of X + Y
$$p_{X+Y}(n)=sum_{k=1}^n P(X=n-k)P(Y=k) = e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p = pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}?$$
probability proof-verification
probability proof-verification
asked Nov 22 at 14:27
dxdydz
1169
1169
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$
if $n>0$, then we have
begin{align}
p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
&= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
end{align}
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$
if $n>0$, then we have
begin{align}
p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
&= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
end{align}
add a comment |
up vote
1
down vote
accepted
if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$
if $n>0$, then we have
begin{align}
p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
&= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
end{align}
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$
if $n>0$, then we have
begin{align}
p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
&= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
end{align}
if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$
if $n>0$, then we have
begin{align}
p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
&= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
end{align}
answered Nov 22 at 14:34
Siong Thye Goh
95.2k1462115
95.2k1462115
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009200%2fsum-of-independent-random-variables-with-different-distributions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown