tensor rank of an element in a tensor product
up vote
1
down vote
favorite
Let $V$ and $W$ be finite-dimensional vector spaces over $k$ with $text{dim}(V)=n$ and $text{dim}(W)=m$.
How can I see that every element $t in V otimes_k W$ has tensor rank at most $text{min}{m,n}$.
abstract-algebra commutative-algebra tensor-products tensor-rank
add a comment |
up vote
1
down vote
favorite
Let $V$ and $W$ be finite-dimensional vector spaces over $k$ with $text{dim}(V)=n$ and $text{dim}(W)=m$.
How can I see that every element $t in V otimes_k W$ has tensor rank at most $text{min}{m,n}$.
abstract-algebra commutative-algebra tensor-products tensor-rank
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $V$ and $W$ be finite-dimensional vector spaces over $k$ with $text{dim}(V)=n$ and $text{dim}(W)=m$.
How can I see that every element $t in V otimes_k W$ has tensor rank at most $text{min}{m,n}$.
abstract-algebra commutative-algebra tensor-products tensor-rank
Let $V$ and $W$ be finite-dimensional vector spaces over $k$ with $text{dim}(V)=n$ and $text{dim}(W)=m$.
How can I see that every element $t in V otimes_k W$ has tensor rank at most $text{min}{m,n}$.
abstract-algebra commutative-algebra tensor-products tensor-rank
abstract-algebra commutative-algebra tensor-products tensor-rank
asked Nov 22 at 14:38
idriskameni
335
335
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
2
down vote
Suppose rank $t=r$ and write
$$
t = sum_{i=1}^r v_i otimes w_i
$$
where $w_i in W$ and $v_i in V$. I claim that ${v_i}_{i=1}^r$ and ${w_i}_{i=1}^r$ must be linearly independent sets.
Assume toward I contradiction that ${v_i}$ is not a linearly independent set. WLOG we can write $v_r=sum_{i=1}^{r-1} lambda_i v_i$. Observe that
$$
v_r otimes w_r = left(sum_{i=1}^{r-1} lambda_i v_iright) otimes w_i=sum_{i=1}^{r-1} left( v_i otimes lambda_i w_r right)
$$
Then we have
$$
t = v_r otimes w_r +sum_{i=1}^{r-1} v_i otimes w_i= sum_{i=1}^{r-1} v_i otimes lambda_i w_r+sum_{i=1}^{r-1} v_i otimes w_i = sum_{i=1}^{r-1} v_i otimes (w_i +lambda_i w_r),
$$
contradicting the fact that $t$ has rank $r$. So we must have ${v_i}_{i=1}^r$ is a linearly independent set. A near identical argument works for ${w_i}_{i=1}^r$. It follows that $dim V geq r$ and $dim W geq r$.
add a comment |
up vote
1
down vote
Fix a basis $v_1, ldots, v_n$ of $V$. Then any tensor $t in V otimes W$ can be written $t = v_1 otimes w_1 + cdots + v_n otimes w_n$ for some vectors $w_i$ depending on $t$. This shows the tensor rank is at most $n$, and the argument to show that it is at most $m$ is identical.
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
Suppose rank $t=r$ and write
$$
t = sum_{i=1}^r v_i otimes w_i
$$
where $w_i in W$ and $v_i in V$. I claim that ${v_i}_{i=1}^r$ and ${w_i}_{i=1}^r$ must be linearly independent sets.
Assume toward I contradiction that ${v_i}$ is not a linearly independent set. WLOG we can write $v_r=sum_{i=1}^{r-1} lambda_i v_i$. Observe that
$$
v_r otimes w_r = left(sum_{i=1}^{r-1} lambda_i v_iright) otimes w_i=sum_{i=1}^{r-1} left( v_i otimes lambda_i w_r right)
$$
Then we have
$$
t = v_r otimes w_r +sum_{i=1}^{r-1} v_i otimes w_i= sum_{i=1}^{r-1} v_i otimes lambda_i w_r+sum_{i=1}^{r-1} v_i otimes w_i = sum_{i=1}^{r-1} v_i otimes (w_i +lambda_i w_r),
$$
contradicting the fact that $t$ has rank $r$. So we must have ${v_i}_{i=1}^r$ is a linearly independent set. A near identical argument works for ${w_i}_{i=1}^r$. It follows that $dim V geq r$ and $dim W geq r$.
add a comment |
up vote
2
down vote
Suppose rank $t=r$ and write
$$
t = sum_{i=1}^r v_i otimes w_i
$$
where $w_i in W$ and $v_i in V$. I claim that ${v_i}_{i=1}^r$ and ${w_i}_{i=1}^r$ must be linearly independent sets.
Assume toward I contradiction that ${v_i}$ is not a linearly independent set. WLOG we can write $v_r=sum_{i=1}^{r-1} lambda_i v_i$. Observe that
$$
v_r otimes w_r = left(sum_{i=1}^{r-1} lambda_i v_iright) otimes w_i=sum_{i=1}^{r-1} left( v_i otimes lambda_i w_r right)
$$
Then we have
$$
t = v_r otimes w_r +sum_{i=1}^{r-1} v_i otimes w_i= sum_{i=1}^{r-1} v_i otimes lambda_i w_r+sum_{i=1}^{r-1} v_i otimes w_i = sum_{i=1}^{r-1} v_i otimes (w_i +lambda_i w_r),
$$
contradicting the fact that $t$ has rank $r$. So we must have ${v_i}_{i=1}^r$ is a linearly independent set. A near identical argument works for ${w_i}_{i=1}^r$. It follows that $dim V geq r$ and $dim W geq r$.
add a comment |
up vote
2
down vote
up vote
2
down vote
Suppose rank $t=r$ and write
$$
t = sum_{i=1}^r v_i otimes w_i
$$
where $w_i in W$ and $v_i in V$. I claim that ${v_i}_{i=1}^r$ and ${w_i}_{i=1}^r$ must be linearly independent sets.
Assume toward I contradiction that ${v_i}$ is not a linearly independent set. WLOG we can write $v_r=sum_{i=1}^{r-1} lambda_i v_i$. Observe that
$$
v_r otimes w_r = left(sum_{i=1}^{r-1} lambda_i v_iright) otimes w_i=sum_{i=1}^{r-1} left( v_i otimes lambda_i w_r right)
$$
Then we have
$$
t = v_r otimes w_r +sum_{i=1}^{r-1} v_i otimes w_i= sum_{i=1}^{r-1} v_i otimes lambda_i w_r+sum_{i=1}^{r-1} v_i otimes w_i = sum_{i=1}^{r-1} v_i otimes (w_i +lambda_i w_r),
$$
contradicting the fact that $t$ has rank $r$. So we must have ${v_i}_{i=1}^r$ is a linearly independent set. A near identical argument works for ${w_i}_{i=1}^r$. It follows that $dim V geq r$ and $dim W geq r$.
Suppose rank $t=r$ and write
$$
t = sum_{i=1}^r v_i otimes w_i
$$
where $w_i in W$ and $v_i in V$. I claim that ${v_i}_{i=1}^r$ and ${w_i}_{i=1}^r$ must be linearly independent sets.
Assume toward I contradiction that ${v_i}$ is not a linearly independent set. WLOG we can write $v_r=sum_{i=1}^{r-1} lambda_i v_i$. Observe that
$$
v_r otimes w_r = left(sum_{i=1}^{r-1} lambda_i v_iright) otimes w_i=sum_{i=1}^{r-1} left( v_i otimes lambda_i w_r right)
$$
Then we have
$$
t = v_r otimes w_r +sum_{i=1}^{r-1} v_i otimes w_i= sum_{i=1}^{r-1} v_i otimes lambda_i w_r+sum_{i=1}^{r-1} v_i otimes w_i = sum_{i=1}^{r-1} v_i otimes (w_i +lambda_i w_r),
$$
contradicting the fact that $t$ has rank $r$. So we must have ${v_i}_{i=1}^r$ is a linearly independent set. A near identical argument works for ${w_i}_{i=1}^r$. It follows that $dim V geq r$ and $dim W geq r$.
answered Nov 22 at 14:53
Eric
1816
1816
add a comment |
add a comment |
up vote
1
down vote
Fix a basis $v_1, ldots, v_n$ of $V$. Then any tensor $t in V otimes W$ can be written $t = v_1 otimes w_1 + cdots + v_n otimes w_n$ for some vectors $w_i$ depending on $t$. This shows the tensor rank is at most $n$, and the argument to show that it is at most $m$ is identical.
add a comment |
up vote
1
down vote
Fix a basis $v_1, ldots, v_n$ of $V$. Then any tensor $t in V otimes W$ can be written $t = v_1 otimes w_1 + cdots + v_n otimes w_n$ for some vectors $w_i$ depending on $t$. This shows the tensor rank is at most $n$, and the argument to show that it is at most $m$ is identical.
add a comment |
up vote
1
down vote
up vote
1
down vote
Fix a basis $v_1, ldots, v_n$ of $V$. Then any tensor $t in V otimes W$ can be written $t = v_1 otimes w_1 + cdots + v_n otimes w_n$ for some vectors $w_i$ depending on $t$. This shows the tensor rank is at most $n$, and the argument to show that it is at most $m$ is identical.
Fix a basis $v_1, ldots, v_n$ of $V$. Then any tensor $t in V otimes W$ can be written $t = v_1 otimes w_1 + cdots + v_n otimes w_n$ for some vectors $w_i$ depending on $t$. This shows the tensor rank is at most $n$, and the argument to show that it is at most $m$ is identical.
answered Nov 22 at 15:32
Joppy
5,573420
5,573420
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009216%2ftensor-rank-of-an-element-in-a-tensor-product%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown